特殊类型二项式和椭圆积分

我们所熟知的二项式展开 ( a + b ) N = ∑ j = 0 N ( N j ) a j b ( N − j ) = ∑ j = 0 N ( N j ) a ( N − j ) b j (1) (a+b)^N=\sum_{j=0}^N\begin{pmatrix}N\\j\end{pmatrix}a^jb^{(N-j)}=\sum_{j=0}^N\begin{pmatrix}N\\j\end{pmatrix}a^{(N-j)}b^j \tag 1 (a+b)N=j=0N(Nj)ajb(Nj)=j=0N(Nj)a(Nj)bj(1)
二项式展开的系数 ( N j ) = N ! ( N − j ) !   j ! = Γ ( N + 1 ) Γ ( N − j + 1 ) Γ ( j + 1 ) (2) \begin{pmatrix}N\\j\end{pmatrix}=\frac{N!}{(N-j)!\ j!}=\frac{\Gamma(N+1)}{\Gamma(N-j+1)\Gamma(j+1)} \tag 2 (Nj)=(Nj)! j!N!=Γ(Nj+1)Γ(j+1)Γ(N+1)(2)
如果 N N N 不是正整数,例如 N = 1 / 2 N=1/2 N=1/2 N = − 1 / 2 N=-1/2 N=1/2, 这种特殊类型的二项式展开类似地可表示为
1 − x = ( 1 − x ) 1 / 2 = ∑ j = 0 ∞ ( 1 / 2 j ) ( − x ) j (3) \sqrt{1-x}=(1-x)^{1/2}=\sum_{j=0}^\infty\begin{pmatrix}1/2\\j\end{pmatrix}(-x)^j \tag 3 1x =(1x)1/2=j=0(1/2j)(x)j(3)
1 1 − x = ( 1 − x ) − 1 / 2 = ∑ j = 0 ∞ ( − 1 / 2 j ) ( − x ) j (4) {1\over\sqrt{1-x}}=(1-x)^{-1/2}=\sum_{j=0}^\infty\begin{pmatrix}-1/2\\j\end{pmatrix}(-x)^j \tag 4 1x 1=(1x)1/2=j=0(1/2j)(x)j(4)
这里
( 1 / 2 j ) = ( − 1 ) j − 1 ( 2 j − 3 ) ! ! ( 2 j ) ! ! (5) \begin{pmatrix}1/2\\j\end{pmatrix}=(-1)^{j-1}\frac{(2j-3)!!}{(2j)!!} \tag 5 (1/2j)=(1)j1(2j)!!(2j3)!!(5)
( − 1 / 2 j ) = ( − 1 ) j ( 2 j − 1 ) ! ! ( 2 j ) ! ! (6) \begin{pmatrix}-1/2\\j\end{pmatrix}=(-1)^{j}\frac{(2j-1)!!}{(2j)!!} \tag 6 (1/2j)=(1)j(2j)!!(2j1)!!(6)
一般地
( x j ) = Γ ( x + 1 ) Γ ( x − j + 1 ) Γ ( j + 1 ) (7) \begin{pmatrix}x\\j\end{pmatrix}=\frac{\Gamma(x+1)}{\Gamma(x-j+1)\Gamma(j+1)} \tag 7 (xj)=Γ(xj+1)Γ(j+1)Γ(x+1)(7) 利用
Γ ( x ) = Γ ( x + 1 ) x (8) \Gamma(x)={\Gamma(x+1)\over x} \tag 8 Γ(x)=xΓ(x+1)(8) 可计算 (7)。

利用这种特殊类型的二项式展开,可以计算如下的椭圆积分

The complete elliptic integral of the first kind is defined as follows:
K ( m ) = F ( π 2 ∣ m ) = ∫ 0 π / 2 1 1 − m 2 sin ⁡ 2 ( θ ) d θ (9) K(m)=F(\left. {\pi\over 2}\right|m)=\int_0^{\pi/2}{1\over \sqrt{1-m^2\sin^2(\theta)}}d\theta \tag 9 K(m)=F(2πm)=0π/21m2sin2(θ) 1dθ(9)
The complete elliptic integral of the second kind is defined as follows:
E ( m ) = E ( π 2 ∣ m ) = ∫ 0 π / 2 1 − m 2 sin ⁡ 2 ( θ ) d θ (10) E(m)=E(\left. {\pi\over 2}\right|m)=\int_0^{\pi/2}{ \sqrt{1-m^2\sin^2(\theta)}}d\theta \tag {10} E(m)=E(2πm)=0π/21m2sin2(θ) dθ(10)
利用二项式展开可得到(Ref 1)
K ( m ) = ∫ 0 π / 2 ∑ j = 0 ∞ ( − 1 / 2 j ) ( − 1 ) j ( m 2 sin ⁡ 2 θ ) j = π 2 2 F 1 ( 1 2 , 1 2 ; 1 ; k 2 ) , ( also Ref 4,  8.113 ) (11) \begin{aligned}K(m)&=\int_0^{\pi/2}\sum_{j=0}^\infty \begin{pmatrix}-1/2\\j\end{pmatrix}(-1)^j(m^2\sin^2 \theta)^j \\&={\pi\over 2}{}_2F_1({1\over 2}, {1\over 2};1;k^2), \quad (\textrm{also Ref 4, } 8.113)\end{aligned} \tag {11} K(m)=0π/2j=0(1/2j)(1)j(m2sin2θ)j=2π2F1(21,21;1;k2),(also Ref 4, 8.113)(11)
E ( m ) = ∫ 0 π / 2 ∑ j = 0 ∞ ( 1 / 2 j ) ( − 1 ) j ( m 2 sin ⁡ 2 θ ) j = π 2 2 F 1 ( − 1 2 , 1 2 ; 1 ; k 2 ) , ( also Ref 4,  8.114 ) (12) \begin{aligned}E(m)&=\int_0^{\pi/2}\sum_{j=0}^\infty \begin{pmatrix}1/2\\j\end{pmatrix}(-1)^j(m^2\sin^2 \theta)^j \\&={\pi\over 2}{}_2F_1(-{1\over 2}, {1\over 2};1;k^2),\quad (\textrm{also Ref 4, } 8.114)\end{aligned} \tag {12} E(m)=0π/2j=0(1/2j)(1)j(m2sin2θ)j=2π2F1(21,21;1;k2),(also Ref 4, 8.114)(12)
这里 2 F 1 (   ,   ;   ;   ) _2F_1(\ ,\ ;\ ;\ ) 2F1( , ; ; ) 是超几何函数,涉及到了The Pochhammer symbol (Ref 2),利用下面的公式可计算负数的对应结果
( x ) n = Γ ( x + n ) Γ ( x ) (13) (x)_n={\Gamma(x+n)\over\Gamma(x)} \tag {13} (x)n=Γ(x)Γ(x+n)(13) Γ ( x ) = Γ ( x + 1 ) x (14) \Gamma(x)={\Gamma(x+1)\over x} \tag {14} Γ(x)=xΓ(x+1)(14) ( − x ) n = ( − 1 ) n ( x − n + 1 ) n (15) (-x)_n=(-1)^n(x-n+1)_n \tag {15} (x)n=(1)n(xn+1)n(15)
( − 1 / 2 ) n = Γ ( − 1 / 2 + n ) Γ ( − 1 / 2 ) = ( − 1 / 2 ) Γ ( − 1 / 2 + n ) Γ ( 1 / 2 ) = − ( 2 n − 3 ) ! ! 2 n (-1/2)_n={\Gamma(-1/2+n)\over\Gamma(-1/2)} ={(-1/2)\Gamma(-1/2+n)\over\Gamma(1/2)}={-(2n-3)!!\over 2^n} (1/2)n=Γ(1/2)Γ(1/2+n)=Γ(1/2)(1/2)Γ(1/2+n)=2n(2n3)!!
在Ref 3 p170 习题12,利用椭圆积分计算窄带高斯信号包络的相关。

Ref

  1. https://archive.lib.msu.edu/crcmath/math/math/e/e078.htm
  2. https://mathworld.wolfram.com/PochhammerSymbol.html
  3. W. B. Davenport, Jr., and W. L. Root, An Introduction to the Theory of Randum Signals and Noise, McGraw-Hill, New York, 1958.
  4. Table of Integrals, Series, and Products
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值