meta分析 2. 固定效应和随机效应

本文探讨了meta分析中的固定效应和随机效应模型。固定效应模型假设所有研究共享同一效应量,而随机效应模型则考虑到研究间存在的异质性,允许效应量在总体中有所差异。在估计研究间异质性并计算合并效应时,随机效应模型通常更为适用,因为它能更好地反映现实情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

meta分析 2. 固定效应和随机效应

固定效应模型

固定效应模型假设所有效应量都来自一个单一的相同总体。它指出所有研究都具有相同的真实效应量。这个真实的效果是我们想要在meta分析中计算的整体效果大小,表示为 θ \theta θ

我们可以这样描述这种关系:
θ ^ k = θ + ϵ k \hat\theta_k = \theta + \epsilon_k θ^k=θ+ϵk

虽然不知道研究的真实总体效应大小,但可以利用这种关系来对真实总体效应进行最佳估计 θ ^ k \hat\theta_k θ^k​, 因此,在meta分析中汇集效应时,应该赋予具有更高精度(即更小的标准误差)的效应量更大的权重
w k = 1 s k 2 w_k = \frac{1}{s^2_k} wk=sk21

想计算固定效应模型下的合并效应大小,只需使用所有研究的加权平均值。一旦我们知道权重,我们就可以计算加权平均值,我们对真实合并效应的估计 :
θ ^ = ∑ k = 1 K θ ^ k w k ∑ k = 1 K w k \hat\theta = \frac{\sum^{K}_{k=1} \hat\theta_kw_k}{\sum^{K}_{k=1} w_k}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值