meta分析 1. Risk Ratio

这篇博客探讨了在meta分析中风险比(Risk Ratio, RR)的概念,指出RR不遵循正态分布,通常通过取对数进行转换以确保正常性。文章提到了连续校正方法,如Gart and Zweifel的0.5增量法,以及在样本大小不均衡时的治疗臂连续校正,但警告这些校正可能导致偏倚。建议在不涉及所有研究的零单元格情况下避免使用连续校正。" 78591124,6649557,Java使用Freemarker生成Word文档教程,"['Java开发', '文档生成', 'Freemarker模板', 'Word处理']
摘要由CSDN通过智能技术生成

meta分析 1. Risk Ratio

定义

风险比(也称为相对风险)是两种风险的比率。风险本质上是比例当我们处理二元或二分的结果数据时,可以计算它们。

我们使用术语“风险”而不是“比例”,因为这种类型的结果数据经常出现在医学研究中,在医学研究中,人们检查患上疾病或死亡的风险。此类事件称为事件

# Define data
a <- 46         # events in the treatment group
c <- 77         # events in the control group
n_treat <- 248  # sample size treatment group
n_contr <- 251  # sample size control group

# 计算每组的风险
p_treat <- a/n_treat
p_contr <- c/n_contr

# 计算风险比
rr <- p_treat/p_contr
rr
## [1] 0.6046292

RR 的一个特点是相同大小的效应不是等距的。例如,RR=0.5 表示干预组的风险减半。然而,与这种效应相反,风险因干预而加倍,RR 并不是等于 1.5,而是等于 2. 这意味着风险比率不遵循正态分布,这在meta分析中可能会出现问题。

为了避免这个问题,风险比通常在合并之前转换为对数风险比。这确保了正常性,效果大小可以采用任何值,并且值以 0 为中心(意味着没有效果)。转换是通过取 RR 的自然对数来执行的:

# 计算对数风险比
log_rr <- log(rr)
log_rrCopy
## [1] -0.5031398
# 计算对数风险比的标准差
se_log_rr <- sqrt((1/a) + (1/c) - (1/n_treat) - (1/n_contr))
se_log_rr
## [1] 0.1634314
## 背后的数学原理可自行查阅附带第一篇的链接书本

统计检验

# 计算对数风险比的95%置信区间
# 置信上限
ciup <- log_rrCopy+1.96*se_log_rr

# 置信下限
ciup <- log_rrCopy-1.96*se_log_rr

挺重要的原文内容(我还没时间看👀):(This issue is often dealt with using a continuity correction. The most common continuity correction method is to add an increment of 0.5 in all cells that are zero (Gart and Zweifel 1967). When the sample sizes of the control group and treatment group are very uneven, we can also use the treatment arm continuity correction (Sweeting, Sutton, and Lambert 2004).

However, there is evidence that such corrections can lead to biased results (Efthimiou 2018). The (fixed-effect) Mantel-Haenszel method, a meta-analytic pooling technique we will discover in Chapter 4.2.3.1.1, can handle zero cells without correction, unless they exist in every study in our meta-analysis. It may therefore be advisable to avoid continuity corrections unless the latter scenario applies)

🤐真是太难学了。

参考书籍:

  1. Doing Meta-Analysis in R.

  2. Applied Meta-Analysis with R and Stata.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值