2021 考研线代知识点整理

文章链接
https://gitee.com/fakerlove/linear-algebra

2021 考研线代(34分)

选择2个

填空题 1个

解答2 个

1. 行列式-数

概念

不同行不同列元素乘积的代数和 ∣ a b c d ∣ = a d − b c \begin{vmatrix}a&b\\ c&d\end{vmatrix}=ad-bc acbd=adbc

1.1 计算

1)数字型行列式

  • 性质

    进行转置行列式不变 ∣ A T ∣ = ∣ A ∣ \mid A^T\mid=\mid A\mid AT=A
    两行或者两列互换位置,行列式的值变号
    某行或者某列有着公因式k,可以把k 提出到行列式记号外
    行列式某行(某列)是两个元素之和,则可把行列式拆成两个行列式之和 ∣ a 1 + b 1 a 2 + b 2 a 3 + b 3 c 1 c 2 c 3 d 1 d 2 d 3 ∣ = ∣ a 1 a 2 a 3 c 1 c 2 c 3 d 1 d 2 d 3 ∣ + ∣ b 1 b 2 b 3 c 1 c 2 c 3 d 1 d 2 d 3 ∣ \begin{vmatrix}a_1+b_1&a_2+b_2&a_3+b_3\\ c_1&c_2&c_3\\ d_1&d_2&d_3\end{vmatrix}=\begin{vmatrix}a_1&a_2&a_3\\ c_1&c_2&c_3\\ d_1&d_2&d_3\end{vmatrix}+\begin{vmatrix}b_1&b_2&b_3\\ c_1&c_2&c_3\\ d_1&d_2&d_3\end{vmatrix} a1+b1c1d1a2+b2c2d2a3+b3c3d3=a1c1d1a2c2d2a3c3d3+b1c1d1b2c2d2b3c3d3
    某行或列的k 倍加到另一行(或列),行列式的值不变 ∣ a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 ∣ = ∣ a 1 a 2 a 3 b 1 + k a 1 b 2 + k a 2 b 3 + k a 3 c 1 c 2 c 3 ∣ \begin{vmatrix}a_1&a_2&a_3\\ b_1&b_2&b_3\\ c_1&c_2&c_3\end{vmatrix}=\begin{vmatrix}a_1&a_2&a_3\\ b_1+ka_1&b_2+ka_2&b_3+ka_3\\ c_1&c_2&c_3\end{vmatrix} a1b1c1a2b2c2a3b3c3=a1b1+ka1c1a2b2+ka2c2a3b3+ka3c3
    拉普拉斯展开式 ∣ A ∗ O B ∣ = ∣ A O ∗ B ∣ = ∣ A ∣ ⋅ ∣ B ∣ ∣ O A B ∗ ∣ = ∣ ∗ A B O ∣ = ( − 1 ) m n ∣ A ∣ ⋅ ∣ B ∣ \begin{vmatrix}A& *\\ O& B\end{vmatrix}=\begin{vmatrix}A&O\\ *&B\end{vmatrix}=\mid A\mid \cdot \mid B\mid\\ \begin{vmatrix}O& A\\ B& *\end{vmatrix}=\begin{vmatrix}*&A\\ B&O\end{vmatrix}=(-1)^{mn}\mid A\mid \cdot \mid B\mid AOB=AOB=ABOBA=BAO=(1)mnAB
    范德蒙行列式 ∣ 1 2 3 a 1 a 2 a 3 a 1 2 a 2 2 a 3 2 ∣ = ( x 2 − x 1 ) ( x 3 − x 1 ) ( x 3 − x 2 ) \begin{vmatrix}1&2&3\\ a_1&a_2&a_3\\ a_1^2&a_2^2&a_3^2\end{vmatrix}=(x_2-x_1)(x_3-x_1)(x_3-x_2) 1a1a122a2a223a3a32=(x2x1)(x3x1)(x3x2)
  • 行列式计算普通方法

方法例题
逐行相加 ∣ a 1 − 1 0 0 a 2 x − 1 0 a 3 0 x − 1 a 4 0 0 x ∣ = ∣ a 1 − 1 0 0 a 1 x + a 2 0 − 1 0 a 3 0 x − 1 a 4 0 0 x ∣ = ∣ a 1 − 1 0 0 a 1 x + a 2 0 − 1 0 a 1 x 2 + a 2 x + a 3 0 0 − 1 a 4 0 0 x ∣ = ∣ a 1 − 1 0 0 a 1 x + a 2 0 − 1 0 a 1 x 2 + a 2 x + a 3 0 0 − 1 a 1 x 3 + a 2 x 2 + a 3 x + a 4 0 0 0 ∣ \begin{vmatrix}a_1&-1&0&0\\ a_2&x&-1&0\\ a_3&0&x&-1\\ a_4&0&0&x\end{vmatrix}\\ =\begin{vmatrix}a_1&-1&0&0\\ a_1x+a_2&0&-1&0\\ a_3&0&x&-1\\ a_4&0&0&x\end{vmatrix}\\ =\begin{vmatrix}a_1&-1&0&0\\ a_1x+a_2&0&-1&0\\ a_1x^2+a_2x+a_3&0&0&-1\\ a_4&0&0&x\end{vmatrix}\\ =\begin{vmatrix}a_1&-1&0&0\\ a_1x+a_2&0&-1&0\\ a_1x^2+a_2x+a_3&0&0&-1\\ a_1x^3+a_2x^2+a_3x+a_4&0&0&0\end{vmatrix} a1a2a3a41x0001x0001x=a1a1x+a2a3a4100001x0001x=a1a1x+a2a1x2+a2x+a3a410000100001x=a1a1x+a2a1x2+a2x+a3a1x3+a2x2+a3x+a4100001000010
(递推法) ∣ 2 a 1 a 2 2 a 1 a 2 2 a 1 … … a 2 2 a 1 a 2 2 a ∣ 答 案 ( n + 1 ) a n , 用 数 学 归 纳 法 证 明 D k = 2 a D k − 1 − a 2 D k − 2 \begin{vmatrix}2a&1\\ a^2&2a&1\\ &a^2&2a&1\\ &&……\\&&a^2&2a&1&\\ &&&a^2&2a\end{vmatrix}\\ 答案(n+1)a^n,用数学归纳法证明D_k=2aD_{k-1}-a^2D_{k-2} 2aa212aa212aa212aa212an+1)an,Dk=2aDk1a2Dk2

2)抽象行列式

行列式性质 若 A 是 n 阶 矩 阵 , A T 是 A 的 转 置 矩 阵 , 则 ∣ A T ∣ = ∣ A ∣ ; 若 A 是 n 阶 矩 阵 , 则 ∣ k A ∣ = k n ∣ A ∣ ; 若 A 是 n 阶 矩 阵 , A ∗ 是 A 的 伴 随 矩 阵 , 则 ∣ A ∗ ∣ = ∣ A ∣ n − 1 若 A 是 n 阶 可 逆 矩 阵 , A − 1 是 A 的 逆 矩 阵 , 则 ∣ A n − 1 ∣ = ∣ A ∣ − 1 若 矩 阵 A 和 B 相 似 A   B , 则 ∣ A ∣ = ∣ B ∣ 若 A 是 n 阶 矩 阵 , A A ∗ = A ∗ A = ∣ A ∣ E A − n 阶 , 特 征 值 为 λ 1 , λ 2 , λ n ∣ A ∣ = ∏ λ i 若A是n阶矩阵,A^T是A的转置矩阵,则\mid A^T\mid =\mid A\mid;\\ 若A是n 阶矩阵,则\mid kA \mid=k^n\mid A\mid;\\ 若A 是n 阶矩阵, A^* 是A的伴随矩阵,则\mid A^*\mid=\mid A\mid^{n-1}\\ 若A 是n阶可逆矩阵,A^{-1}是A的逆矩阵,则\mid A^{n-1}\mid=\mid A\mid ^{-1}\\ 若矩阵A和B 相似A ~ B,则\mid A\mid =\mid B\mid \\若A 是n阶矩阵,AA^*=A^*A=\mid A\mid E\\ A-n 阶,特征值为\lambda_1,\lambda_2,\lambda_n\mid A\mid=\prod\lambda_i AnATAAT=A;AnkA=knAAnAAA=An1AnA1AAn1=A1ABA BA=BAnAA=AA=AEAnλ1,λ2,λnA=λi
正交矩阵的性质 A A T = A T A = E , ∣ A ∣ 2 = 1 AA^T=A^TA=E,\mid A\mid^2=1 AAT=ATA=E,A2=1
3阶特征值展开 ∣ λ E − A ∣ = λ 3 − ( λ 1 + λ 2 + λ 3 ) λ 2 + λ − λ 1 λ 2 λ 3 = λ 3 − ( a 11 + a 22 + a 33 ) λ 2 + S 2 λ − ∣ A ∣ \mid \lambda E-A\mid=\lambda^3-(\lambda_1+\lambda_2+\lambda_3)\lambda^2+\lambda-\lambda_1\lambda_2\lambda_3=\lambda^3-(a_{11}+a_{22}+a_{33})\lambda^2+S_2\lambda -\mid A\mid λEA=λ3(λ1+λ2+λ3)λ2+λλ1λ2λ3=λ3(a11+a22+a33)λ2+S2λA
代数余子式应用 展 开 式 ∣ A ∣ = a i 1 A i 1 + a i 2 A i 2 + + a i n A i n 当 i ≠ j 时 a i 1 A j 1 + a i 2 A j 2 + ⋯ + a i n A j n = 0 展开式\mid A\mid=a_{i1}A_{i1}+a_{i2}A_{i2}++a_{in}A_{in}\\当i\ne j 时\\ a_{i1}A_{j1}+a_{i2}A_{j2}+\cdots+a_{in}A_{jn}=0 A=ai1Ai1+ai2Ai2++ainAini=jai1Aj1+ai2Aj2++ainAjn=0
矩阵不可逆 A 矩 阵 不 可 逆 , ∣ A ∣ = 0 A 矩阵不可逆,\mid A\mid=0 AA=0

1.2 应用

1)特征值多项式

A ∗ , A − 1 相 关 , 无 关 , 正 定 A^*,A^-1相关,无关,正定 A,A1

2)克拉默法则(证明题)

{ a 11 x 1 + a 12 x 2 + … … + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + … … + a 2 n x n = b 2 … … a n 1 x 1 + a n 2 x 2 + … … + a n n x n = b n D = ∣ a 11 a 12 … … a 1 n a 21 a 22 … … a 2 n … … a n 1 a n 2 … … a n n ∣ , D 1 = ∣ b 1 a 12 … … a 1 n b 2 a 22 … … a 2 n … … b n a n 2 … … a n n ∣ ∣ D ∣ ≠ 0 , 方 程 组 有 唯 一 解 , 且 x 1 = ∣ D 1 ∣ ∣ D ∣ , x 2 = ∣ D 2 ∣ ∣ D ∣ , … … x n = ∣ D n ∣ ∣ D ∣ 若 D ≠ 0 , 则 A X = 0 只 有 零 解 A X = 0 有 非 零 解 , 则 ∣ A ∣ = 0 \begin{cases}a_{11}x_1+a{12}x_2+……+a_{1n}x_n=b_1\\ a_{21}x_1+a{22}x_2+……+a_{2n}x_n=b_2\\ ……\\ a_{n1}x_1+a{n2}x_2+……+a_{nn}x_n=b_n\end{cases}\\ D=\begin{vmatrix}a_{11}&a_{12}&……&a_{1n}\\ a_{21}&a_{22}&……&a_{2n}\\ &&……\\ a_{n1}&a_{n2}&……&a_{nn} \end{vmatrix},D_1=\begin{vmatrix}b_1&a_{12}&……&a_{1n}\\ b_2&a_{22}&……&a_{2n}\\ &&……\\ b_n&a_{n2}&……&a_{nn} \end{vmatrix}\\ \mid D\mid \ne 0,方程组有唯一解,且x_1=\frac{\mid D_1\mid}{\mid D\mid},x_2=\frac{\mid D_2\mid}{\mid D\mid },……x_n=\frac{\mid D_n\mid}{\mid D\mid }\\ 若D\ne 0,则AX=0 只有零解\\ AX=0 有非零解,则\mid A\mid =0 a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2an1x1+an2x2++annxn=bnD=a11a21an1a12a22an2a1na2nann,D1=b1b2bna12a22an2a1na2nannD=0,x1=DD1,x2=DD2xn=DDnD=0,AX=0AX=0A=0

1.3 证明题

A x = 0 有 非 零 解 r ( A ) < n , ∣ A ∣ = − ∣ A ∣ Ax=0有非零解\\ r(A)<n,\\ \mid A\mid=-\mid A\mid Ax=0r(A)<n,A=A

1.4 题型

题型题目解答
∣ A ∣ = ∣ 1 1 2 − 1 − 2 3 4 1 3 4 1 2 − 4 2 0 6 ∣ 求 1. A 12 − 2 A 22 + 3 A 32 − 4 A 42 = 2. A 31 + 2 A 32 + A 34 \mid A\mid =\begin{vmatrix}1&1&2&-1\\ -2&3&4&1\\ 3 &4&1&2\\ -4&2&0&6\end{vmatrix}\\ 求1.A_{12}-2A_{22}+3A_{32}-4A_{42}=\\ 2.A_{31}+2A_{32}+A_{34} A=12341342241011261.A122A22+3A324A42=2.A31+2A32+A34 1. 答 案 0 = a 11 A 12 + a 21 A 22 + a 31 A 32 + a 41 A 41 = 0 2. 答 案 − 40 构 造 新 的 行 列 式 ∣ 1 1 2 − 1 − 2 3 4 1 1 2 0 1 − 4 2 0 6 ∣ = − 40 1.答案0 \\ =a_{11}A_{12}+a_{21}A_{22}+a_{31}A_{32}+a_{41}A_{41}\\ =0\\ 2.答案-40\\构造新的行列式 \begin{vmatrix}1&1&2&-1\\ -2&3&4&1\\ 1&2&0 &1\\ -4&2&0&6\end{vmatrix}\\ =-40 1.0=a11A12+a21A22+a31A32+a41A41=02.401214132224001116=40
A , B − 3 阶 , ∣ A ∣ = 3 , ∣ B ∣ = 2 , ∣ A − 1 + B ∣ = 2 , 则 ∣ A + B − 1 ∣ = A,B-3阶,\mid A\mid=3,\mid B\mid=2,\\ \mid A^{-1}+B\mid =2,则\mid A+B^{-1}\mid= A,B3A=3,B=2,A1+B=2,A+B1= ∣ E A + B − 1 A ∣ = ∣ ( B − 1 B ) A + B − 1 ( A − 1 A ) ∣ = ∣ B − 1 ( B + A − 1 ) A ∣ = 1 2 ∗ 2 ∗ 3 = 3 \mid EA+B^{-1}A\mid\\ = \mid (B^{-1}B)A+B^{-1}(A^{-1}A)\mid\\ = \mid B^{-1}(B+A^{-1})A\mid\\ = \frac{1}{2}*2*3=3 EA+B1A=(B1B)A+B1(A1A)=B1(B+A1)A=2123=3
A − 4 阶 正 交 矩 阵 , ∣ A ∣ < 0 , ∣ B − A ∣ = 5 , 则 ∣ E − A B T ∣ = A-4阶正交矩阵,\mid A\mid<0,\mid B-A\mid=5,\\ 则\mid E-AB^T\mid= A4A<0,BA=5,EABT= ∣ A A T − A B T ∣ = ∣ A ( A T − B T ) ∣ = ∣ A ∣ ∣ A T − B T ∣ = ( − 1 ) ∣ ( B − A ) T ∣ = ( − 1 ) ∗ ( − 1 ) 4 ∣ ( A − B ) T ∣ = − 5 \mid AA^T-AB^T\mid\\ =\mid A(A^T-B^T)\mid\\ =\mid A\mid \mid A^T-B^T\mid\\ =(-1)\mid(B-A)^T\mid\\ =(-1)*(-1)^4\mid (A-B)^T\mid\\ =-5 AATABT=A(ATBT)=AATBT=(1)(BA)T=(1)(1)4(AB)T=5
相似 A − 3 阶 , α 1 , α 2 , α 3 − 3 维 线 性 代 数 无 关 列 向 量 A α 1 = α 2 + α 3 , A α 2 = α 1 + α 3 , A α 3 = α 1 + α 2 + 2 α 3 , 求 ∣ A ∗ ∣ A-3阶,\alpha_1,\alpha_2,\alpha_3 -3维线性代数无关列向量\\ A\alpha_1=\alpha_2+\alpha_3,\\ A\alpha_2=\alpha_1+\alpha_3,\\ A\alpha_3=\alpha_1+\alpha_2+2\alpha_3,求\mid A^*\mid A3α1,α2,α33线Aα1=α2+α3Aα2=α1+α3,Aα3=α1+α2+2α3,A A ( α 1 , α 2 , α 3 ) = ( α 1 , α 2 , α 3 ) ∣ 0 1 1 1 0 3 1 1 2 ∣ A P = P B P − 1 A P = B A , B 相 似 ∣ A ∣ = 2 ∣ A ∗ ∣ = ∣ A ∣ n − 1 = ∣ A ∣ 2 = 4 A( \alpha_1,\alpha_2,\alpha_3)=(\alpha_1,\alpha_2,\alpha_3)\begin{vmatrix}0&1&1\\ 1&0&3\\ 1&1&2\end{vmatrix} \\ AP=PB\\ P^{-1}AP=B\\ A,B相似\mid A\mid=2 \\ \mid A^*\mid=\mid A\mid^{n-1}=\mid A\mid^2=4 A(α1,α2,α3)=(α1,α2,α3)011101132AP=PBP1AP=BA,BA=2A=An1=A2=4
A − 3 阶 , E − 3 阶 单 位 矩 阵 , 如 A , A − 2 E , 3 A + 2 E 均 不 可 逆 , ∣ A + E ∣ = A-3阶,E-3阶单位矩阵,\\ 如A,A-2E,3A+2E均不可逆,\\ \mid A+E\mid = A3E3A,A2E,3A+2EA+E= 因 为 不 可 逆 , 所 以 行 列 式 等 于 0 ∣ A ∣ = 0 , ∣ A − 2 E ∣ = 0 , ∣ 3 A + 2 E ∣ = 0 ( − 1 ) 3 ∣ 0 E − A ∣ = 0 , ( − 1 ) 3 ∣ 2 E − A ∣ = 0 , ( − 3 ) 3 ∣ − 2 3 E − A ∣ = 0 , 求 出 特 征 值 0 , 2 , − 2 3 , A + E 的 特 征 值 1 , 3 , 1 3 , ∣ A + E ∣ = 1 ∗ 3 ∗ 1 3 = 1 因为不可逆,所以行列式等于0 \\ \mid A\mid =0,\mid A-2E\mid=0,\mid 3A+2E\mid=0\\ (-1)^3\mid 0E-A\mid=0,\\ (-1)^3\mid 2E-A\mid=0,\\ (-3)^3\mid -\frac{2}{3}E-A\mid=0,\\ 求出特征值0,2,-\frac{2}{3},\\ A+E 的特征值1,3,\frac{1}{3},\\ \mid A+E\mid=1*3*\frac{1}{3}=1 0A=0,A2E=0,3A+2E=0(1)30EA=0,(1)32EA=0,(3)332EA=0,0,2,32A+E1,331A+E=1331=1

1.5 方法总结

问题基本思路
证 明 行 列 式 ∣ A ∣ 为 0 证明行列式\mid A\mid 为0 A0 1. 矩 阵 不 可 逆 2. r ( A ) < n 3. A x = 0 有 非 零 解 4.0 是 矩 阵 A 的 特 征 值 5. A 的 行 列 式 向 量 线 性 相 关 1.矩阵不可逆\\ 2.r(A)<n\\ 3.Ax=0有非零解\\ 4.0是矩阵A的特征值\\ 5.A 的行列式向量线性相关 1.2.r(A)<n3.Ax=04.0A5.A线

2. 矩阵

2.1 概念及运算

矩 阵 是 一 个 m ∗ n 的 表 格 , [ a i j ] m ∗ n 矩阵是一个m*n 的表格,[a_{ij}]_{m*n} mn,[aij]mn

1)运算

方阵的幂 ( A + B ) 2 = A 2 + A B + B A + B 2 ≠ A 2 + 2 A B + B 2 ( A B ) k = ( A B ) ( A B ) ⋯ ( A B ) ≠ A k B k (A+B)^2=A^2+AB+BA+B^2\ne A^2+2AB+B^2\\ (AB)^k=(AB)(AB)\cdots(AB)\ne A^kB^k (A+B)2=A2+AB+BA+B2=A2+2AB+B2(AB)k=(AB)(AB)(AB)=AkBk
$AB=C ,C 的行向量可以用B的行向量线性表示\ AB=C,C 是列向量可以用A 的列向量线性表示\$
加减法$$
转置 ( A + B ) T = A T + B T ( A B ) T = B T A T ( A T ) T = A ( k A ) T = k A T (A+B)^T=A^T+B^T\\ (AB)^T=B^TA^T\\ (A^T)^T=A\\ (kA)^T=kA^T (A+B)T=AT+BT(AB)T=BTAT(AT)T=A(kA)T=kAT
乘法,只有结合律 ( A B ) C = A ( B C ) A ( B + C ) = A B + A C ( B + C ) A = B A + C A (AB)C=A(BC)\\ A(B+C)=AB+AC\\ (B+C)A=BA+CA (AB)C=A(BC)A(B+C)=AB+AC(B+C)A=BA+CA

2)特殊矩阵

1. 单 位 矩 阵 , 主 对 角 元 素 为 1 2. 对 角 阵 , 非 对 角 元 素 都 是 0 3. 上 ( 下 ) 三 角 矩 阵 , 当 i < j ( j < i ) 时 , a i j = 0 的 矩 阵 表 示 上 ( 下 角 矩 阵 4. 对 称 矩 阵 , 满 足 A = A T , 及 a i j = a j i 5. 正 交 矩 阵 , A A T = A T A = E , 的 矩 阵 成 为 正 交 矩 阵 A T = A − 1 6. 初 等 矩 阵 : 单 位 矩 阵 经 过 初 等 变 换 所 得 到 的 矩 阵 7. 行 最 简 矩 阵 : 非 零 行 的 主 元 都 是 1 , 且 主 元 所 在 列 的 其 他 元 素 都 是 0 1.单位矩阵,主对角元素为1\\ 2.对角阵,非对角元素都是0\\ 3.上(下)三角矩阵,当i<j(j<i)时,a_{ij}=0 的矩阵表示上(下角矩阵\\ 4.对称矩阵,满足A=A^T,及a_{ij}=a_{ji}\\ 5.正交矩阵,AA^T=A^TA=E,的矩阵成为正交矩阵A^T=A^{-1}\\ 6.初等矩阵:单位矩阵经过初等变换所得到的矩阵\\ 7.行最简矩阵:非零行的主元都是1 ,且主元所在列的其他元素都是0 1.12.03.()i<j(j<i)aij=0(4.,A=AT,aij=aji5.AAT=ATA=EAT=A16.:7.10

2.2 伴随矩阵,可逆矩阵

1)概念

伴随矩阵
矩 阵 A 的 行 列 式 ∣ A ∣ 所 有 的 代 数 余 子 式 所 构 成 的 [ A 11 A 21 ⋯ A n 1 A 21 A 22 ⋯ A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n ⋯ A n n ] 的 矩 阵 称 为 矩 阵 A 的 伴 随 矩 阵 , 记 为 A ∗ 矩阵A 的行列式\mid A\mid 所有的代数余子式所构成的\\ \begin{bmatrix}A_{11}&A_{21}&\cdots&A_{n1}\\ A_{21}&A_{22}&\cdots&A_{n2}\\ \vdots&\vdots&&\vdots \\ A_{1n}&A_{2n}&\cdots&A_{nn}\end{bmatrix}\\ 的矩阵称为矩阵A 的伴随矩阵,记为A^* AAA11A21A1nA21A22A2nAn1An2AnnAA
可逆矩阵
A B = B A = E ( 单 位 矩 阵 ) , A 是 可 逆 矩 阵 , B 是 A 的 可 逆 矩 阵 AB=BA=E(单位矩阵),A是可逆矩阵,B是A的可逆矩阵 AB=BA=E(),ABA

2)公式

公式介绍
核 心 公 式 A A ∗ = A ∗ A = ∣ A ∣ E ( A ∗ ) − 1 = ( A − 1 ) ∗ = 1 ∣ A ∣ A ∣ A ∗ ∣ = ∣ A ∣ n − 1 ( A ∗ ) ∗ = ∣ A ∣ n − 2 A A − 1 = 1 ∣ A ∣ A ∗ 核心公式AA^*=A^*A=\mid A\mid E\\ (A^*)^{-1}=(A^{-1})^*=\frac{1}{\mid A\mid}A\\ \mid A^*\mid=\mid A\mid ^{n-1}\\ (A^*)^*=\mid A\mid^{n-2}A\\ A^{-1}=\frac{1}{\mid A\mid}A^* AA=AA=AE(A)1=(A1)=A1AA=An1(A)=An2AA1=A1A
r ( A ) = n − 1 ⇔ ∣ A ∣ = 0 且 A 中 有 n − 1 阶 子 式 不 为 0 r(A)=n-1\Leftrightarrow \mid A\mid=0且A中有n-1 阶子式不为0 r(A)=n1A=0An10
r ( A ∗ ) = { n , 如 r ( A ) = n 1 , 如 r ( A ) = n − 1 0 , 如 r ( A ) r(A^*)=\begin{cases}n,如r(A)=n\\ 1,如r(A)=n-1\\ 0,如r(A)\end{cases} r(A)=n,r(A)=n1,r(A)=n10,r(A)
( k A ) ∗ = k n − 1 A ∗ (kA)^*=k^{n-1}A^* (kA)=kn1A

公式对比

逆矩阵公式转置公式
( k A ) − 1 = 1 k A − 1 (kA)^{-1}=\frac{1}{k}A^{-1} (kA)1=k1A1 ( k A ) T = k A T (kA)^T=kA^T (kA)T=kAT
( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A ( A T ) T = A (A^T)^T=A (AT)T=A
( A 2 ) − 1 = ( A − 1 ) 2 (A^2)^{-1}=(A^{-1})^2 (A2)1=(A1)2 ( A 2 ) T = ( A T ) 2 (A^2)^T=(A^T)^2 (A2)T=(AT)2
( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1 ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT
( A + B ) − 1 没 公 式 (A+B)^{-1}没公式 (A+B)1 ( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT

( A − B ) 2 = E ( A − B ) − 1 = A − B (A-B)^2=E\\ (A-B)^{-1}=A-B (AB)2=E(AB)1=AB

3)求逆矩阵

  • 用公式

    A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{\mid A\mid}A^* A1=A1A

  • 初等变换

  • 分块矩阵
    [ B O O C ] = [ B − 1 O O C − 1 ] \begin{bmatrix}B&O\\ O&C\end{bmatrix}=\begin{bmatrix}B^{-1}&O\\ O&C^{-1}\end{bmatrix} [BOOC]=[B1OOC1]

[ O B − 1 C O ] = [ O C − 1 B − 1 O ] \begin{bmatrix}O&B^{-1}\\ C&O\end{bmatrix}=\begin{bmatrix}O&C^{-1}\\ B^{-1}&O\end{bmatrix} [OCB1O]=[OB1C1O]

2.3 初等矩阵,初等变换

1)初等变换

  • 倍乘

    [ 1 0 0 0 k 0 0 0 1 ] \begin{bmatrix}1&0&0\\ 0&k&0\\ 0&0&1\end{bmatrix} 1000k0001

  • 互换

    [ 0 1 0 1 0 0 0 0 1 ] \begin{bmatrix}0&1&0\\ 1&0&0\\ 0&0&1\end{bmatrix} 010100001

  • 倍加

    [ 1 0 0 0 1 0 k 0 1 ] \begin{bmatrix}1&0&0\\ 0&1&0\\ k&0&1\end{bmatrix} 10k010001

2)初等矩阵

单 位 矩 阵 经 过 初 等 变 化 后 就 是 初 等 矩 阵 初 等 矩 阵 P 左 乘 A , 所 得 P A 就 是 A 做 了 一 次 与 P 同 样 的 行 变 换 初 等 矩 阵 均 可 逆 , 且 其 逆 矩 阵 也 是 初 等 矩 阵 初 等 矩 阵 的 逆 矩 阵 三 种 , 行 变 换 和 列 变 换 的 就 是 变 成 负 数 交 换 两 行 变 换 的 就 是 自 己 本 身 还 有 就 是 对 角 线 上 的 逆 矩 阵 就 是 倒 数 单位矩阵经过初等变化后就是初等矩阵\\ 初等矩阵P左乘A,所得PA就是A做了一次与P 同样的行变换\\ 初等矩阵均可逆,且其逆矩阵也是初等矩阵\\ 初等矩阵的逆矩阵三种,行变换和列变换的就是变成负数\\ 交换两行变换的就是自己本身\\ 还有就是对角线上的逆矩阵就是倒数 PA,PAAP线

2.4 矩阵的秩

1)概念

秩 r ( A ) = r ⇔ 矩 阵 A 中 非 零 子 式 的 最 高 阶 数 是 r 秩r(A)=r\Leftrightarrow 矩阵A中非零子式的最高阶数是r r(A)=rAr

2)性质

性质介绍
$如果A~ B,AB相似,则r(A)=r(B),r(A+kE)=r(B+kE) $
设 A − m ∗ n , B − n ∗ s , 如 果 A B = 0 , 1. B 的 列 向 量 是 A x = 0 的 解 , 2. r ( A ) + r ( B ) ≤ n 设A-m*n,B-n*s,如果AB=0,\\ 1. B的列向量是Ax=0 的解,\\ 2.r(A)+r(B)\leq n Amn,Bns,AB=0,1.BAx=02.r(A)+r(B)n
r ( [ A O O B ] ) = r ( A ) + r ( B ) r(\begin{bmatrix}A&O\\ O&B \end{bmatrix})=r(A)+r(B) r([AOOB])=r(A)+r(B)
如 果 A 可 逆 , r ( A B ) = r ( B ) , r ( B A ) = r ( B ) 如果A可逆,r(AB)=r(B),r(BA)=r(B) Ar(AB)=r(B),r(BA)=r(B)
r ( A + B ) ≤ r ( A ) + r ( B ) r ( A B ) ≤ m i n ( r ( A ) , r ( B ) ) 如 果 C 可 逆 , B = A C , r ( B ) = r ( A C ) = r ( A ) r(A+B)\leq r(A)+r(B)\\ r(AB)\leq min(r(A),r(B))\\ 如果C可逆,B=AC,r(B)=r(AC)=r(A) r(A+B)r(A)+r(B)r(AB)min(r(A),r(B))CB=AC,r(B)=r(AC)=r(A)
可 逆 矩 阵 的 秩 为 n , ∣ A ∣ ≠ 0 , A x = 0 只 有 零 解 , 0 不 是 A 的 特 征 值 ∣ A ∣ = 0 , A x = 0 有 非 零 解 可逆矩阵的秩为n,\mid A\mid \ne0,Ax=0 只有零解,0不是A 的特征值\\ \mid A\mid =0,Ax=0 有非零解 n,A=0,Ax=0,0AA=0,Ax=0
A − m ∗ n , 如 m < n , A x = 0 , 必 有 非 0 解 A-m*n ,如m<n,Ax=0,必有非0解 Amn,m<nAx=00
秩 为 1 的 n 阶 方 阵 A = α β T , α , β 为 n 维 列 向 量 。 A k = ( α T β ) k − 1 A 秩为1 的n 阶方阵A=\alpha\beta^T,\alpha,\beta为n 维列向量。A^k=(\alpha^T\beta)^{k-1}A 1nA=αβT,α,βnAk=(αTβ)k1A
r ( A T A ) = r ( A ) r ( k A ) = r ( A ) r(A^TA)=r(A)\\ r(kA)=r(A) r(ATA)=r(A)r(kA)=r(A)
r ( A A T ) ≤ 1 r(AA^T)\le 1 r(AAT)1

2.5 分块矩阵

[ A O O B ] n = [ A n O O B n ] [ A O O B ] − 1 = [ A − 1 O O B − 1 ] \begin{bmatrix}A&O\\ O&B\end{bmatrix}^n=\begin{bmatrix}A^n&O\\ O&B^n\end{bmatrix}\\ \begin{bmatrix}A&O\\ O&B\end{bmatrix}^{-1}=\begin{bmatrix}A^{-1}&O\\ O&B^{-1}\end{bmatrix} [AOOB]n=[AnOOBn][AOOB]1=[A1OOB1]

2.6 解法

怎么求行列式等于0,反证法,克莱姆法则,秩,特征值,相反数

问题问题思路
A 2 = A , A ≠ E , 求 证 ∣ A ∣ = 0 A^2=A,A\ne E ,求证\mid A\mid =0 A2=A,A=E,A=0 假 设 ∣ A ∣ ≠ 0 , A ( A − E ) = 0 , 又 因 为 ∣ A ∣ ≠ 0 ⇔ A ≠ 0 所 以 A − E = 0 , A = E 与 题 意 不 符 , 所 以 ∣ A ∣ = 0 假设\mid A\mid \ne 0,A(A-E)=0,\\ 又因为\mid A\mid \ne 0 \Leftrightarrow A\ne0\\ 所以A-E=0,A=E与题意不符,\\ 所以\mid A\mid =0 A=0,A(AE)=0,A=0A=0AE=0A=EA=0反证法
A 2 = A ⇒ A ( A − E ) = 0 A − E 的 列 向 量 是 A x = 0 的 解 A x = 0 的 解 A − E ≠ 0 , 所 以 A x = 0 有 非 0 解 , ∣ A ∣ = 0 A^2=A \Rightarrow A(A-E)=0\\ A-E的列向量是Ax=0的解Ax=0的解\\ A-E\ne 0,所以Ax=0 有非0解,\mid A\mid=0 A2=AA(AE)=0AEAx=0Ax=0AE=0Ax=00A=0克莱姆法则
A 2 = A , 即 A ( A − E ) = 0 , 所 以 r ( A ) + r ( A − E ) ≤ n , 因 为 A − E ≠ 0 , r ( A − E ) ≥ 1 , 所 以 r ( A ) < n , 所 以 ∣ A ∣ = 0 A^2=A,即A(A-E)=0,\\所以r(A)+r(A-E)\le n,因为A-E\ne 0,r(A-E)\ge1,所以r(A)<n,所以\mid A\mid =0 A2=A,A(AE)=0,r(A)+r(AE)n,AE=0,r(AE)1,r(A)<n,A=0

2.7 例题

题型题目解答
A = [ a i j ] 3 ∗ 3 , 满 足 A ∗ = A T , 若 a 11 , a 12 , a 13 为 三 个 相 等 的 正 数 , 则 a 11 为 A=[a_{ij}]_{3*3},满足A^*=A^T,\\ 若a_{11},a_{12},a_{13}为三个相等的正数,\\ 则a_{11}为 A=[aij]33A=ATa11,a12,a13,a11 A ∗ = A T ⇔ a i j = A i j ∣ A ∣ = a 11 A 11 + a 12 A 12 + a 13 A 13 = 3 a 11 2 ∣ A ∗ ∣ = ∣ A ∣ n − 1 = ∣ A ∣ 2 ∣ A T ∣ = ∣ A ∣ ∣ A ∣ 2 = ∣ A ∣ , 因 为 ∣ A ∣ = 3 a 11 2 > 0 ∣ A ∣ = 1 , a 11 = 1 3 A^*=A^T\Leftrightarrow a_{ij}=A_{ij}\\ \mid A\mid=a_{11}A_{11}+a_{12}A_{12}+a_{13}A_{13}=3a_{11}^2\\ \mid A^*\mid=\mid A\mid^{n-1}=\mid A\mid ^{2}\\ \mid A^T\mid =\mid A\mid \\ \mid A\mid ^2=\mid A\mid ,因为\mid A\mid =3a_{11}^2>0\\ \mid A\mid =1,a_{11}=\frac{1}{\sqrt{3}} A=ATaij=AijA=a11A11+a12A12+a13A13=3a112A=An1=A2AT=AA2=A,A=3a112>0A=1,a11=3 1
A = [ 1 0 0 0 − 2 3 0 0 0 − 4 5 0 0 0 − 6 7 ] B = ( E + A ) − 1 ( E − A ) 求 ( E + B ) − 1 A=\begin{bmatrix}1&0&0&0\\ -2&3&0&0\\ 0&-4&5&0\\ 0&0&-6&7\end{bmatrix}\\ B=(E+A)^{-1}(E-A) \\ 求(E+B)^{-1} A=1200034000560007B=(E+A)1(EA)(E+B)1 ( E + B ) − 1 = ( E + ( E + A ) − 1 ( E − A ) ) − 1 = ( ( E + A ) − 1 ( E + A ) + ( E + A ) − 1 ( E − A ) ) = ( ( E + A ) − 1 ( E + A + E − A ) ) = ( 2 E ( E + A ) − 1 ) − 1 = 1 2 ( E + A ) (E+B)^{-1}=(E+(E+A)^{-1}(E-A))^{-1}\\ =((E+A)^{-1}(E+A)+(E+A)^{-1}(E-A))\\ =((E+A)^{-1}(E+A+E-A)) \\ =(2E(E+A)^{-1})^{-1}=\frac{1}{2}(E+A) (E+B)1=(E+(E+A)1(EA))1=((E+A)1(E+A)+(E+A)1(EA))=((E+A)1(E+A+EA))=(2E(E+A)1)1=21(E+A)
A , B 都 是 正 交 矩 阵 ∣ A ∣ + ∣ B ∣ = 0 , 求 ∣ A + B ∣ A,B都是正交矩阵\\ \mid A\mid +\mid B\mid =0,\\ 求\mid A+B\mid A,BA+B=0,A+B ∣ A + B ∣ = ∣ E A + B E ∣ = ∣ B B T A + B A T A ∣ = ∣ B ( B T + A T ) A ∣ = ∣ B ∣ ⋅ ∣ ( B + A ) T ∣ ⋅ ∣ A ∣ = − ∣ A ∣ 2 ∣ B + A ∣ − ∣ A + B ∣ , 所 以 ∣ A + B ∣ = 0 \mid A+B\mid =\mid EA+BE\mid\\ =\mid BB^TA+BA^TA\mid \\ =\mid B(B^T+A^T)A\mid \\ =\mid B\mid \cdot \mid (B+A)^T\mid \cdot \mid A\mid\\ =-\mid A\mid^2\mid B+A\mid\\ -\mid A+B\mid,\\ 所以\mid A+B\mid=0 A+B=EA+BE=BBTA+BATA=B(BT+AT)A=B(B+A)TA=A2B+AA+B,A+B=0
r ( A ) = 1 表 示 A 矩 阵 可 以 表 示 为 [ a 1 a 2 a 3 ] [ b 1 b 2 b 3 ] , A 2 = [ a 1 a 2 a 3 ] [ b 1 b 2 b 3 ] [ a 1 a 2 a 3 ] [ b 1 b 2 b 3 ] [ b 1 b 2 b 3 ] [ a 1 a 2 a 3 ] = 一 个 数 字 A 2 = C A , 然 后 开 始 递 推 A n = C n − 1 A r(A)=1 表示A矩阵可以表示为\begin{bmatrix}a_1\\ a_2\\ a_3\end{bmatrix} \begin{bmatrix}b_1&b_2&b_3\end{bmatrix},\\ A^2=\begin{bmatrix}a_1\\ a_2\\ a_3\end{bmatrix} \begin{bmatrix}b_1&b_2&b_3\end{bmatrix} \begin{bmatrix}a_1\\ a_2\\ a_3\end{bmatrix} \begin{bmatrix}b_1&b_2&b_3\end{bmatrix}\\ \begin{bmatrix}b_1&b_2&b_3\end{bmatrix} \begin{bmatrix}a_1\\ a_2\\ a_3\end{bmatrix}=一个数字\\ A^2=CA,然后开始递推\\ A^n=C^{n-1}A r(A)=1Aa1a2a3[b1b2b3],A2=a1a2a3[b1b2b3]a1a2a3[b1b2b3][b1b2b3]a1a2a3=A2=CA,An=Cn1A
特殊方阵的幂 A = [ 0 a b 0 0 c 0 0 0 ] 型 A 2 = [ 0 0 a c 0 0 0 0 0 0 ] 拓 展 A = [ 1 2 3 0 1 4 0 0 1 ] , 求 A n A=\begin{bmatrix}0&a&b\\ 0&0&c\\ 0&0&0\end{bmatrix}型\\ A^2=\begin{bmatrix}0&0&ac\\ 0&0&0\\ 0&0&0\end{bmatrix}\\ 拓展 \\ A=\begin{bmatrix}1&2&3\\ 0&1&4\\ 0&0&1\end{bmatrix},求A^n A=000a00bc0A2=000000ac00A=100210341,An A = [ 1 0 0 0 1 0 0 1 0 ] + [ 0 2 3 0 0 4 0 0 0 ] = E + B A n = ( E + B ) n = E n + n E n − 1 B + C n 2 E n − 1 B 2 + C n 3 E n − 2 B 3 + ⋯ = [ 1 0 0 0 1 0 0 0 1 ] + n [ 0 2 3 0 0 4 0 0 0 ] + n ( n + 1 ) n [ 0 0 24 0 0 0 0 0 0 ] A=\begin{bmatrix}1&0&0\\ 0&1&0\\ 0&1&0\end{bmatrix}+\begin{bmatrix}0&2&3\\ 0&0&4\\ 0&0&0\end{bmatrix}=E+B\\ A^n=(E+B)^n\\ =E^n+nE^{n-1}B+C_n^2E^{n-1}B^2+C_n^3E_{n-2}B^3+\cdots\\ =\begin{bmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{bmatrix}+n\begin{bmatrix}0&2&3\\ 0&0&4\\ 0&0&0\end{bmatrix}+\frac{n(n+1)}{n}\begin{bmatrix}0&0&24\\ 0&0&0\\ 0&0&0\end{bmatrix} A=100011000+000200340=E+BAn=(E+B)n=En+nEn1B+Cn2En1B2+Cn3En2B3+=100010001+n000200340+nn(n+1)0000002400
相似的题目 P − 1 A P = B ( P − 1 A P ) ( P − 1 A P ) = B 2 P − 1 A 2 P = B 2 A n = P B n P − 1 A n = P [ a 1 a 2 a 3 ] n P − 1 = P [ a 1 n a 2 n a 3 ] P − 1 P^{-1}AP=B\\ (P^{-1}AP)(P^{-1}AP)=B^2\\ P^{-1}A^2P=B^2\\ A^n=PB^nP^{-1}\\ A^n=P\begin{bmatrix}a_1&&\\ &a_2&\\ &&a_3\end{bmatrix}^nP^{-1}=P\begin{bmatrix}a_1^n&&\\ &a_2^n&\\ &&a_3\end{bmatrix}P^{-1} P1AP=B(P1AP)(P1AP)=B2P1A2P=B2An=PBnP1An=Pa1a2a3nP1=Pa1na2na3P1
A = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] , B = [ a 11 a 12 a 13 a 21 + 2 a 31 a 22 + 2 a 33 a 23 + 2 a 32 a 31 a 32 a 33 ] 若 A − 1 = [ 1 2 3 0 4 5 0 0 6 ] , 则 B − 1 = A=\begin{bmatrix}a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23}\\ a_{31}&a_{32}&a_{33}\end{bmatrix},B=\begin{bmatrix}a_{11}&a_{12}&a_{13}\\ a_{21}+2a_{31}&a_{22}+2a_{33}&a_{23}+2_{a32}\\ a_{31}&a_{32}&a_{33}\end{bmatrix}\\ 若A^{-1}=\begin{bmatrix}1&2&3\\ 0&4&5\\ 0&0&6\end{bmatrix},则B^{-1}= A=a11a21a31a12a22a32a13a23a33,B=a11a21+2a31a31a12a22+2a33a32a13a23+2a32a33A1=100240356,B1=

3. 向量

3.1 概念

n 个 数 a 1 , a 2 , a 3 , a n 所 构 成 的 一 个 有 序 数 组 称 为 n 维 向 量 , 记 成 ( a 1 , a 2 , ⋯   , a n ) n个数a_1,a_2,a_3,a_n所构成的一个有序数组称为n 维向量,记成(a_1,a_2,\cdots ,a_n) na1,a2,a3,ann(a1,a2,,an)

运算

零向量,所有的分量都是0

  • 加法

  • 数乘

  • 内积

    ( α , β ) = a 1 b 1 , a 2 b 2 , + ⋯ + a n b n = a T β = β T α (\alpha,\beta)=a_1b_1,a2b_2,+\cdots+a_nb_n=a^T\beta=\beta^T\alpha (α,β)=a1b1,a2b2,++anbn=aTβ=βTα

3.2 线性表出,线性相关

线性表的概念

对 n 维 向 量 α 1 , α 2 , 如 果 存 在 实 数 k 1 , k 2 , k 3 , 使 得 k 1 α 1 + k 2 α 2 + ⋯ + k n α n = β , 称 向 量 β 是 向 量 是 组 合 对n维向量\alpha_1,\alpha_2,如果存在实数k_1,k_2,k_3,使得k_1\alpha_1+k_2\alpha_2+\cdots+k_n\alpha_n=\beta,称向量\beta 是向量是组合 nα1,α2,k1,k2,k3,使k1α1+k2α2++knαn=β,β

线性相关

对 n 维 向 量 α 1 , α 2 , ⋯   , α s , 若 果 ∃ 不 全 维 0 的 k 1 , k 2 , k 3 , ⋯   , k n 使 得 k 1 α 1 + k 2 α 2 + ⋯ + k s α s = 0 成 立 , 则 称 向 量 组 α 1 , α 2 , α 3 + ⋯ 线 性 相 关 , 否 则 称 α 1 , α 2 , 线 性 无 关 对n 维向量\alpha_1,\alpha_2,\cdots ,\alpha_s,若果\exists 不全维0 的k_1,k_2,k_3,\cdots,k_n\\ 使得k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s=0 成立,\\ 则称向量组\alpha_1,\alpha_2,\alpha_3+\cdots 线性相关,否则称\alpha_1,\alpha_2,线性无关 nα1,α2,,αs0k1,k2,k3,,kn使k1α1+k2α2++ksαs=0,α1,α2,α3+线α1,α2线

其次方程组线性相关=有非零解=秩<n

性质

如 果 α 1 , α 2 , ⋯   , α r 线 性 相 关 则 α 1 , α 2 , ⋯   , α r , α s 必 相 关 低 维 向 量 无 关 , 高 维 向 量 必 无 关 如果\alpha_1,\alpha_2,\cdots,\alpha_r 线性相关\\ 则\alpha_1,\alpha_2,\cdots,\alpha_r,\alpha_s 必相关\\ 低维向量无关,高维向量必无关 α1,α2,,αr线α1,α2,,αr,αs

3.3 极大线性无关组,秩

概念

  • 设 向 量 组 α 1 , α 2 , ⋯   , α s 中 , 有 一 部 分 组 a i 1 , a i 2 , a i r , 满 足 条 件 a i 1 , a i 2 , a i r 线 性 无 关 , 再 添 加 一 个 向 量 a j ( 1 ≤ j ≤ s ) , 向 量 组 必 相 关 则 称 向 量 组 是 极 大 线 性 无 关 组 设向量组\alpha_1,\alpha_2,\cdots,\alpha_s 中,有一部分组a_{i1},a_{i2},a_{ir},满足条件\\ a_{i1},a_{i2},a_{ir}线性无关,\\ 再添加一个向量a_j(1\le j\le s),向量组必相关\\ 则称向量组是极大线性无关组 α1,α2,,αsai1,ai2,airai1,ai2,air线,aj(1js)线

  • 向 量 组 α 1 , α 2 , ⋯   , α s 的 极 大 线 性 无 关 组 中 所 含 向 量 的 个 数 r 称 为 该 向 量 组 的 秩 , 记 为 r ( α 1 , α 2 , α s ) = r 向量组\alpha_1,\alpha_2,\cdots,\alpha_s的极大线性无关组中所含向量的个数r称为该向量组的秩,记为r(\alpha_1,\alpha_2,\alpha_s)=r α1,α2,,αs线rr(α1,α2,αs)=r

秩的定理

定理
α 1 , α 2 , α 3 , ⋯ , α s 可 以 由 β 1 , β 2 , ⋯   , β t 线 性 表 出 。 且 是 s > t , 则 α 1 , α 2 , α 3 , ⋯ , α s 必 相 关 如 果 α 1 , α 2 , α 3 , ⋯ , α s 无 关 , 且 α 1 , α 2 , α 3 , ⋯ , α s 可 以 由 β 1 , β 2 , ⋯   , β t 线 性 表 出 可 以 推 出 s ≤ t \alpha_1,\alpha_2,\alpha_3,\cdots,\alpha_s 可以由\beta_1,\beta_2,\cdots,\beta_t线性表出。且是s>t ,\\ 则\alpha_1,\alpha_2,\alpha_3,\cdots,\alpha_s必相关\\ 如果\alpha_1,\alpha_2,\alpha_3,\cdots,\alpha_s 无关,且\alpha_1,\alpha_2,\alpha_3,\cdots,\alpha_s 可以由\beta_1,\beta_2,\cdots,\beta_t线性表出\\ 可以推出 s\le t α1,α2,α3,αsβ1,β2,,βt线s>tα1,α2,α3,αsα1,α2,α3,αsα1,α2,α3,αsβ1,β2,,βt线st
如 果 向 量 组 ( 1 ) α 1 , α 2 , α 3 , 可 以 由 ( 2 ) β 1 , β 2 , ⋯   , β s 线 性 表 出 则 r ( 1 ) ≤ r ( 2 ) 如 果 向 量 组 1 , 2 等 价 , 则 r ( 1 ) = r ( 2 ) 如果向量组(1)\alpha_1,\alpha_2,\alpha_3,可以由(2)\beta_1,\beta_2,\cdots,\beta_s线性表出\\ 则r(1)\le r(2)\\ 如果向量组1,2等价,则r(1)=r(2) (1)α1,α2,α3,(2)β1,β2,,βs线r(1)r(2)1,2r(1)=r(2)
如 果 向 量 组 ( 1 ) α i 1 , α i 2 , ⋯   , α i s , ( 2 ) β j 1 , β j 2 , ⋯   , β j 2 , 都 是 α 1 , α 2 , α 3 , ⋯ , α s 的 极 大 线 性 无 关 组 则 r = t 如果向量组(1)\alpha_{i1},\alpha_{i2},\cdots,\alpha_{is},(2)\beta_{j1},\beta_{j2},\cdots,\beta_{j2},\\都是\alpha_1,\alpha_2,\alpha_3,\cdots,\alpha_s的极大线性无关组\\ 则r=t (1)αi1,αi2,,αis,(2)βj1,βj2,,βj2α1,α2,α3,αs线r=t
经 过 初 等 变 换 向 量 组 的 秩 不 变 经过初等变换向量组的秩不变

3.4 schmidt正交化,正交矩阵

设 向 量 组 α 1 , α 2 , α 3 线 性 无 关 。 令 β 1 = α 1 , β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 β 3 = α 3 − ( α 3 , β 1 ) ( β 1 , β 1 ) β 1 − ( α 3 , β 2 ) ( β 2 , β 2 ) β 2 然 后 在 单 位 化 设向量组\alpha_1,\alpha_2,\alpha_3线性无关。\\ 令\beta_1=\alpha_1,\\ \beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1\\ \beta_3=\alpha_3-\frac{(\alpha_3,\beta_1)}{(\beta_1,\beta_1)}\beta_1-\frac{(\alpha_3,\beta_2)}{(\beta_2,\beta_2)}\beta_2\\ 然后在单位化 α1,α2,α3线β1=α1,β2=α2(β1,β1)(α2,β1)β1β3=α3(β1,β1)(α3,β1)β1(β2,β2)(α3,β2)β2

3.5 向量空间

全体n 维向量连同向量的加法和数乘运算合成为n 维向量空间

过渡矩阵

1. α 1 , α 2 , ⋯   , α n , 2. β 1 , β 2 , ⋯   , β n [ β 1 , β 2 , ⋯   , β n ] = [ α 1 , α 2 , ⋯   , α n ] C C 为 基 α 到 β 的 过 渡 矩 阵 1.\alpha_1,\alpha_2,\cdots,\alpha_n,\\ 2.\beta_1,\beta_2,\cdots,\beta_n\\ [\beta_1,\beta_2,\cdots,\beta_n]=[\alpha_1,\alpha_2,\cdots,\alpha_n]C\\ C 为基\alpha到\beta 的过渡矩阵 1.α1,α2,,αn,2.β1,β2,,βn[β1,β2,,βn]=[α1,α2,,αn]CCαβ

3.6 例题

t考点问题解答
重 组 的 例 题 设 λ 1 , λ 2 是 矩 阵 A 不 同 的 特 征 值 α 1 , α 2 是 λ 1 线 性 无 关 的 特 征 向 量 , α 是 λ 2 的 特 征 向 量 , 证 明 α 1 , α 2 , α 线 性 无 关 重组的例题\\ 设\lambda_1,\lambda_2 是矩阵A不同的特征值\\ \alpha_1,\alpha_2是\lambda_1线性无关的特征向量,\\ \alpha 是\lambda_2的特征向量,证明\alpha_1,\alpha_2,\alpha线性无关 λ1,λ2Aα1,α2λ1线αλ2α1,α2,α线 A α 1 = λ 1 α 1 , A α 2 = λ 1 α 2 , A α = λ 2 α k 1 α 1 + k 2 α 2 + k α = 0 用 A 左 乘 A k 1 α 1 + A k 2 α 2 + A k α = 0 k 1 λ 1 α 1 + k 2 λ 1 α 2 + k λ 2 α = 0 用 λ 1 乘 λ 1 k 1 α 1 + λ 1 k 2 α 2 + λ 1 k α = 0 然 后 两 个 式 子 相 减 A\alpha_1=\lambda_1\alpha_1,A\alpha_2=\lambda_1\alpha_2,\\ A\alpha=\lambda_2\alpha\\ k_1\alpha_1+k_2\alpha_2+k\alpha=0\\ 用A左乘 \\ Ak_1\alpha_1+Ak_2\alpha_2+Ak\alpha=0\\ k_1\lambda_1\alpha_1+k_2\lambda_1\alpha_2+k\lambda_2\alpha=0\\ 用\lambda_1 乘\\ \lambda_1k_1\alpha_1+\lambda_1k_2\alpha_2+\lambda_1k\alpha=0\\ 然后两个式子相减 Aα1=λ1α1,Aα2=λ1α2,Aα=λ2αk1α1+k2α2+kα=0AAk1α1+Ak2α2+Akα=0k1λ1α1+k2λ1α2+kλ2α=0λ1λ1k1α1+λ1k2α2+λ1kα=0
A − 3 阶 , α 1 , α 2 是 A 分 别 特 征 值 − 1 和 1 的 特 征 向 量 , 且 A α 3 = α 2 + α 3 证 明 α 1 , α 2 , α 3 线 性 无 关 求 A 的 相 似 矩 阵 A-3阶,\alpha_1,\alpha_2是A分别特征值-1和1 的特征向量,\\ 且A\alpha_3=\alpha_2+\alpha_3\\ 证明\alpha_1,\alpha_2,\alpha_3 线性无关\\ 求A 的相似矩阵 A3α1,α2A11Aα3=α2+α3α1,α2,α3线A

3.7 解法总结

证明问题方法
证 明 向 量 线 性 无 关 α 1 , α 2 , α 3 线 性 无 关 证 明 2 α 1 + 3 α 2 , α 2 − α 3 , α 1 − α 2 + α 3 证明向量线性无关\\ \alpha_1,\alpha_2,\alpha_3线性无关\\ 证明 2\alpha_1+3\alpha_2,\alpha_2-\alpha_3,\alpha_1-\alpha_2+\alpha_3 线α1,α2,α3线2α1+3α2,α2α3,α1α2+α3 方 法 一 : 第 一 步 设 k 1 α 1 + k 2 α 2 + ⋯ + k s α s = 0 方 法 有 两 个 1. 乘 2. 重 组 方 法 二 : 用 线 性 表 出 来 做 方 法 三 : 用 秩 来 做 \\ 方法一:\\ 第一步设k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s=0\\ 方法有两个\\ 1.乘\\ 2.重组\\ 方法二:用线性表出来做\\ 方法三:用秩来做 k1α1+k2α2++ksαs=01.2.线
证 明 线 性 表 出 证明线性表出 线 用 秩 做 证 明 k ≠ 0 用秩做\\ 证明k\ne 0 k=0

4. 方程组

4.1 齐次线性方程组

性质
A x = 0 有 非 零 解 ⇔ 秩 r ( A ) < n ⇔ A 的 列 向 量 线 性 相 关 Ax=0有非零解\Leftrightarrow 秩r(A)<n \Leftrightarrow A的列向量线性相关 Ax=0r(A)<nA线
λ 1 , λ 2 , ⋯   , λ t 是 A x = 0 的 解 , 则 k 1 λ 1 + k 2 λ 2 + ⋯ + k t λ t 是 A x = 0 的 解 \lambda_1,\lambda_2,\cdots,\lambda_t是Ax=0 的解,则k_1\lambda_1+k_2\lambda_2+\cdots+k_t\lambda_t是Ax=0的解 λ1,λ2,,λtAx=0k1λ1+k2λ2++ktλtAx=0
若 A x = 0 有 非 0 解 , 则 线 性 无 关 , 解 向 量 的 个 数 为 n − r ( A ) 若Ax=0 有非0解,则线性无关,解向量的个数为n-r(A) Ax=00线nr(A)
t = n − r ( A ) 表 示 线 性 无 关 解 向 量 的 个 数 未 知 数 中 自 由 变 量 的 个 数 t=n-r(A)\\ 表示线性无关解向量的个数\\ 未知数中自由变量的个数 t=nr(A)线

4.2 非齐次方程组

参数的处理,讨论

解的结构
A X = B 有 解 ⇔ r ( A ) = r ( A ‾ ) 有 唯 一 解 r ( A ) = r ( A ‾ ) = n ∞ 解 : r ( A ) = r ( A ‾ ) < n A X = b 无 解 r ⇔ r ( A ) + 1 = r ( A ‾ ) AX=B有解\Leftrightarrow r(A)=r(\overline{A})\\ 有唯一解r(A)=r(\overline A)=n\\ \infty解:r(A)=r(\overline A)<n\\ AX=b 无解r\Leftrightarrow r(A)+1=r(\overline A) AX=Br(A)=r(A)r(A)=r(A)=n:r(A)=r(A)<nAX=brr(A)+1=r(A)

解的性质

设 η 1 , η 2 是 A x = b 的 两 个 解 , ξ 是 对 应 齐 次 方 程 组 的 A x = 0 的 解 , A ( η 1 − η 2 ) = 0 , A ( η 1 + k ξ ) = b 设\eta_1,\eta_2是Ax=b 的两个解,\xi是对应齐次方程组的Ax=0 的解,\\ A(\eta_1-\eta_2)=0,A(\eta_1+k\xi)=b η1,η2Ax=bξAx=0A(η1η2)=0,A(η1+kξ)=b

解的结构

设 A m ∗ n x = b 特 解 , 对 应 的 齐 次 方 程 组 A x = 0 , 有 基 础 解 析 , ξ 1 , ξ 2 , ⋯   , ξ n − r , 则 解 为 k 1 ξ 1 + k 2 ξ 2 + ⋯ + k n − r ξ n − r + η 设A_{m*n}x=b特解,对应的齐次方程组Ax=0,有基础解析,\xi_1,\xi_2,\cdots,\xi_{n-r},\\ 则解为k_1\xi_1+k_2\xi_{2}+\cdots+k_{n-r}\xi_{n-r}+\eta Amnx=bAx=0,ξ1,ξ2,,ξnrk1ξ1+k2ξ2++knrξnr+η

4.3 公共解,同解

概念

公共解: 方 程 组 A m ∗ n x = 0 和 B m ∗ n x = 0 的 公 共 解 是 满 足 方 程 组 [ A B ] x = 0 的 解 方程组A_{m*n}x=0和B_{m*n}x=0 的公共解是满足方程组\begin{bmatrix}A\\ B \end{bmatrix}x=0的解 Amnx=0Bmnx=0[AB]x=0

同解: 若 α 是 1 的 解 , 则 α 一 定 是 2 的 解 , 反 之 , 若 α 是 2 的 解 , 则 α 必 定 是 1 的 解 , 就 称 1 和 2 同 解 若\alpha 是1的解,则\alpha 一定是2 的解,反之,若\alpha 是2 的解,则\alpha 必定是1 的解,就称1和2 同解 α1α2α2α112

性质

A T A x = 0 和 A x = 0 是 同 解 A^TAx=0和Ax=0 是同解 ATAx=0Ax=0

4.4 解法

问题答案解法

4.5 例题

考点题目解答
公共解的问题 有 基 础 解 系 为 1. α 1 = ( 1 , 0 , 2 , 3 ) T , α 2 = ( 0 , 1 , 3 , 5 ) T 2. β 1 = ( 2 , − 1 , a + 2 , 1 ) , β 2 = ( − 1 , 2 , 4 , a + 8 ) T 求 1 , 2 的 非 0 公 共 解 有基础解系为\\ 1.\alpha_1=(1,0,2,3)^T,\alpha_2=(0,1,3,5)^T\\ 2.\beta_1=(2,-1,a+2,1),\beta_2=(-1,2,4,a+8)^T\\ 求1,2的非0 公共解 1.α1=(1,0,2,3)T,α2=(0,1,3,5)T2.β1=(2,1,a+2,1),β2=(1,2,4,a+8)T120 设 非 0 解 公 共 解 为 r , 则 r = x 1 α 1 + x 2 α 2 = − y 1 β 1 − y 2 β 2 既 有 x 1 α 1 + x 2 α 2 + y 1 β 1 + y 2 β 2 = 0 A = ( α 1 , α 2 , β 1 , β 2 ) 对 于 A x = 0 的 系 数 矩 阵 A 为 初 等 行 变 换 A = [ 1 0 2 − 1 0 1 − 1 2 2 3 a + 2 4 3 5 1 a + 8 ] ⇒ [ 1 0 2 − 1 0 1 − 1 2 0 0 a + 1 0 0 0 0 a + 1 ] r ≠ 0 ⇔ x i , y i 不 全 为 0 r ( A ) < 4 a = − 1 设非0解公共解为r,则r=x_1\alpha_1+x_2\alpha_2=-y_1\beta_1-y_2\beta_2\\ 既有x_1\alpha_1+x_2\alpha_2+y_1\beta_1+y_2\beta_2=0\\ A=(\alpha_1,\alpha_2,\beta_1,\beta_2)\\ 对于Ax=0的系数矩阵A为初等行变换\\ A=\begin{bmatrix}1&0&2&-1\\ 0&1&-1&2\\ 2&3&a+2&4\\ 3&5&1&a+8\end{bmatrix}\Rightarrow \begin{bmatrix}1&0&2&-1\\ 0&1&-1&2\\ 0&0&a+1&0\\ 0&0&0&a+1\end{bmatrix}\\ r\ne 0\Leftrightarrow x_i,y_i不全为0\\ r(A)<4\\ a=-1 0r,r=x1α1+x2α2=y1β1y2β2x1α1+x2α2+y1β1+y2β2=0A=(α1,α2,β1,β2)Ax=0AA=1023013521a+21124a+81000010021a+10120a+1r=0xi,yi0r(A)<4a=1
[ 1 2 0 1 − 1 1 ] X = [ 2 6 3 4 ] \begin{bmatrix}1&2&0\\ 1&-1&1\end{bmatrix}X=\begin{bmatrix}2&6\\ 3&4\end{bmatrix} [112101]X=[2364] x − 3 ∗ 2 的 矩 阵 , 答 案 [ 2 − 2 k 1 6 − 2 k 2 k 1 k 2 1 + 3 k 1 − 2 + 3 k 2 ] x-3*2的矩阵,答案\begin{bmatrix}2-2k_1&6-2k_2\\ k_1&k_2\\ 1+3k_1&-2+3k_2\end{bmatrix} x3222k1k11+3k162k2k22+3k2

5. 特征值,特征向量,相似矩阵

5.1 特征值,特征值向量

概念

A 是 n 阶 方 阵 , 如 果 对 于 数 λ , 存 在 非 零 向 量 α , 使 得 A α = λ α 成 立 , 则 称 λ 是 A 的 特 征 值 , α 是 A 的 对 应 于 λ 的 特 征 向 量 A是n阶方阵,如果对于数\lambda ,存在非零向量\alpha,使得A\alpha=\lambda\alpha \\ 成立,则称\lambda 是A的特征值,\alpha 是A 的对应于\lambda 的特征向量 Anλ,α使Aα=λαλA,αAλ

性质

矩阵的特征值,特征向量的性质证明
A α = λ α , α ≠ 0 α 是 ( λ E − A ) x = 0 的 非 零 解 A\alpha=\lambda\alpha,\alpha\ne 0\\ \alpha 是(\lambda E-A)x =0的非零解 Aα=λα,α=0α(λEA)x=0
∣ λ E − A ∣ = 0 \mid \lambda E-A\mid=0 λEA=0
P − 1 A P = B P^{-1}AP=B P1AP=B
∏ i = 1 n λ i = ∣ A ∣ \prod_{i=1}^n \lambda_i=\mid A\mid i=1nλi=A
如 果 是 n 阶 矩 阵 , r ( A ) = 1 ∣ λ E − A ∣ = λ n − ∑ a i i λ n − 1 如果是n 阶矩阵,r(A)=1\\ \mid \lambda E-A\mid =\lambda^n-\sum a_{ii}\lambda^{n-1} nr(A)=1λEA=λnaiiλn1
不 同 特 征 值 的 特 征 向 量 线 性 无 关 k 重 特 征 值 至 多 有 k 个 线 性 无 关 的 特 征 向 量 不同特征值的特征向量线性无关\\ k重特征值至多有k个线性无关的特征向量 线kk线
如 果 P − 1 A P = B 若 A α = λ α , 则 B ( P − 1 α ) = λ ( P − 1 α ) 若 B α = λ α , 则 A ( P α ) = λ ( P α ) 如果P^{-1}AP=B\\ 若A\alpha=\lambda\alpha,则B(P^{-1}\alpha)=\lambda(P^{-1}\alpha)\\ 若B\alpha=\lambda\alpha,则A(P\alpha)=\lambda(P\alpha) P1AP=BAα=λα,B(P1α)=λ(P1α)Bα=λα,A(Pα)=λ(Pα)
特 征 值 相 等 是 矩 阵 相 似 的 必 要 条 件 。 特 征 值 相 等 不 一 定 相 似 除 非 这 些 特 征 值 都 不 同 。 比 如 1 , 2 如 果 有 特 征 值 重 根 的 时 候 , 就 需 要 验 证 了 特征值相等是矩阵相似的必要条件。特征值相等不一定相似\\ 除非这些特征值都不同。比如1,2\\ 如果有特征值重根的时候,就需要验证了 1,2

特征值的算法

A ( 矩 阵 ) A(矩阵) A() λ \lambda λ 特征值 α 特 征 向 量 \alpha 特征向量 α
A + k E A+kE A+kE λ + k \lambda+k λ+k α \alpha α
A − 1 A^{-1} A1 1 λ \frac{1}{\lambda} λ1 α \alpha α
A ∗ A^* A 1 λ ∣ A ∣ \frac{1}{\lambda}\mid A\mid λ1A λ \lambda λ
A n A^n An λ n \lambda^n λn α \alpha α
P − 1 A P P^{-1}AP P1AP λ \lambda λ P − 1 α P^{-1}\alpha P1α

5.2 相似矩阵,矩阵的相似对角化

概念

设 A , B 都 是 n 阶 矩 阵 , 若 存 在 可 逆 矩 阵 P , 使 得 P − 1 A P = B , 则 称 A 相 似 B , 记 为 A ∼ B 若 A ∼ Λ , 其 中 Λ 是 对 角 阵 , 称 A 可 相 似 对 角 化 , Λ 是 A 的 相 似 标 准 型 设A,B 都是n阶矩阵,若存在可逆矩阵P,使得P^{-1}AP=B,则称A相似B,记为A\sim B \\ 若A\sim \Lambda,其中\Lambda 是对角阵,称A 可相似对角化,\Lambda 是A 的相似标准型 A,BnP,使P1AP=B,ABABAΛ,ΛAΛA

性质

两个矩阵相似推出的结论
∣ λ E − A ∣ = ∣ λ E − B ∣ \mid \lambda E-A\mid=\mid \lambda E-B\mid λEA=λEB
r ( A ) = r ( B ) r(A)=r(B) r(A)=r(B)
A , B 有 着 相 同 的 特 征 值 A,B 有着相同的特征值 A,B
∣ A ∣ = ∣ B ∣ = ∏ i = 1 n λ i \mid A\mid=\mid B\mid =\prod_{i=1}^n\lambda_i A=B=i=1nλi
∑ a i i = ∑ b i i \sum a_{ii}=\sum b_{ii} aii=bii
A ∼ B A + k E ∼ B + k E λ A + k E = λ B + k E A \sim B\\A+kE\sim B+kE\\ \lambda_{A+kE}=\lambda_{B+kE} ABA+kEB+kEλA+kE=λB+kE
传 递 性 : A ∼ B , B ∼ C , ⇔ A ∼ C 传递性:A\sim B,B\sim C,\Leftrightarrow A\sim C :AB,BC,AC
A ∼ B , A n ∼ B n A\sim B,A^n\sim B^n AB,AnBn
$A\sim \Lambda \Leftrightarrow A有n个特征向量 $

5.3 实对称矩阵的相似对角化

概念

实 对 称 矩 阵 : 元 素 a i j 都 是 实 数 的 对 称 矩 阵 , a i j 是 实 数 , A T = A 实对称矩阵:元素a_{ij}都是实数的对称矩阵,a_{ij}是实数,A^T=A :aijaijAT=A

性质

实对称矩阵必与对角矩阵相似
实对称矩阵特征值不同特征向量相互正交
实 对 称 矩 阵 必 相 似 于 对 角 阵 , 即 存 在 逆 矩 阵 P , 使 得 P − 1 A P = Λ , 且 存 在 正 交 阵 Q , Q − 1 A Q = Q T A Q = Λ 实对称矩阵必相似于对角阵,即存在逆矩阵P,使得P^{-1}AP=\Lambda,\\ 且存在正交阵Q,Q^{-1}AQ=Q^TAQ=\Lambda P,使P1AP=Λ,Q,Q1AQ=QTAQ=Λ
实对称矩阵特征值必是实数

5.4 例题

A − 2 阶 , α 1 , α 2 − 2 维 无 关 , 且 A α 1 = α 2 , A α 2 = − 2 α 1 + 3 α 2 求 A 的 特 征 值 求 可 逆 矩 阵 P 使 得 P − 1 A P = Λ A-2阶,\alpha_1,\alpha_2-2 维无关,且A\alpha_1=\alpha_2,A\alpha_2=-2\alpha_1+3\alpha_2\\ 求A的特征值\\ 求可逆矩阵P 使得P^{-1}AP=\Lambda A2α1,α22Aα1=α2,Aα2=2α1+3α2AP使P1AP=Λ A ( α 1 , α 2 ) = ( α 2 , − 2 α 1 + 3 α 2 ) A ( α 1 , α 2 ) = ( α 1 , α 2 ) [ 0 − 2 1 3 ] A(\alpha_1,\alpha_2)=(\alpha_2,-2\alpha_1+3\alpha_2)\\ A(\alpha_1,\alpha_2)=(\alpha_1,\alpha_2)\begin{bmatrix}0&-2\\ 1&3\end{bmatrix} A(α1,α2)=(α2,2α1+3α2)A(α1,α2)=(α1,α2)[0123]
A − 3 阶 实 对 称 , r ( A ) = 2 , 若 A 2 = A , 则 A 的 特 征 值 A-3阶实对称,r(A)=2,若A^2=A,则A的特征值 A3r(A)=2,A2=A,A
A − 3 阶 实 对 称 , 各 行 元 素 之 和 全 为 3 , α 1 = ( − 1 , 2 , − 1 ) T , α 2 = ( 0 , − 1 , 1 ) T 是 A x = 0 的 解 , 求 A 的 特 征 值 , 特 征 向 量 求 正 交 矩 阵 Q 使 Q T A Q = Λ 求 A 及 ( A − 3 2 E ) 6 A-3阶实对称,各行元素之和全为3,\alpha_1=(-1,2,-1)^T,\\ \alpha_2=(0,-1,1)^T是Ax=0 的解,\\ 求A的特征值,特征向量\\ 求正交矩阵Q使Q^TAQ=\Lambda\\ 求A及(A-\frac{3}{2}E)^6 A33,α1=(1,2,1)T,α2=(0,1,1)TAx=0AQ使QTAQ=ΛA(A23E)6

5.5 解法总结

6. 二次型

6.1 二次型概念

概念

f ( x 1 , x 2 , ⋯   , x n ) = a 11 x 1 2 + 2 a 12 x 1 x 2 + 2 a 1 n x 1 x n + a m n x n 2 称 为 n 个 变 量 的 二 次 型 , 系 数 均 为 实 数 是 , 称 为 n 元 二 次 型 f(x_1,x_2,\cdots,x_n)=a_{11}x_1^2+2a_{12}x_1x_2+2a_{1n}x_1x_n+a_{mn}x_n^2\\ 称为n个变量的二次型,系数均为实数是,称为n元二次型 f(x1,x2,,xn)=a11x12+2a12x1x2+2a1nx1xn+amnxn2nn

二次型表示

f ( x 1 , x 2 , x 3 ) = x 1 2 + 5 x 2 2 + 5 x 3 2 + 2 x 1 x 2 − 4 x 1 x 3 = ( x 1 , x 2 , x 3 ) [ 1 1 − 2 1 5 0 − 2 0 5 ] [ x 1 x 2 x 3 ] = x T A x 平 方 项 系 数 写 在 主 对 角 线 上 f(x_1,x_2,x_3)=x_1^2+5x_2^2+5x_3^2+2x_1x_2-4x_1x_3\\ =(x_1,x_2,x_3)\begin{bmatrix}1&1&-2\\ 1&5&0\\ -2&0&5\end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3\end{bmatrix}\\ =x^TAx\\ 平方项系数写在主对角线上 f(x1,x2,x3)=x12+5x22+5x32+2x1x24x1x3=(x1,x2,x3)112150205x1x2x3=xTAx线

6.2 标准型,规范性

1)概念

标准型 二 次 型 f ( x 1 , x 2 , ⋯   , x n ) 只 有 平 方 项 , 没 有 混 合 项 ( 即 混 合 项 的 系 数 全 部 为 零 ) x 1 2 + 5 x 2 2 − 2 x 3 2 = x T [ 1 5 − 2 ] x 二次型f(x_1,x_2,\cdots,x_n)只有平方项,没有混合项(即混合项的系数全部为零)\\ x_1^2+5x_2^2-2x_3^2=x^T\begin{bmatrix}1&&\\ &5&\\ &&-2\end{bmatrix}x f(x1,x2,,xn)()x12+5x222x32=xT152x
规范性 平 方 项 的 系 数 只 能 是 1 , − 1 , 0 比 如 x 1 2 + x 2 2 平方项的系数只能是1,-1,0\\ 比如x_1^2+x_2^2 11,0x12+x22
正惯性指数 是 对 于 标 准 型 来 讲 的 , 正 平 方 项 的 系 数 p 称 为 正 惯 性 指 数 , 负 平 方 项 系 数 q 称 为 负 惯 性 指 数 , p + q = r 是 二 次 型 对 应 矩 阵 的 秩 , p − q 称 为 符 号 差 x 1 2 + 4 x 2 2 + 9 x 3 2 对 应 的 p = 3 , q = 0 x 1 2 − x 2 2 − x 3 2 对 应 的 p = 1 , q = 2 是对于标准型来讲的,正平方项的系数p称为正惯性指数,负平方项系数q称为负惯性指数,p+q=r是二次型对应矩阵的秩,p-q称为符号差\\ x_1^2+4x_2^2+9x_3^2对应的p=3,q=0\\ x_1^2-x_2^2-x_3^2对应的p=1,q=2 pqp+q=rpqx12+4x22+9x32p=3,q=0x12x22x32p=1,q=2
合同 设 两 个 A B 是 两 个 n 阶 方 程 , 若 存 在 可 逆 阵 C , 使 得 C T A C = B , 则 称 A 合 同 于 B , 继 承 A ≃ B 设两个AB是两个n阶方程,若存在可逆阵C,使得C^TAC=B,\\ 则称A合同于B,继承A\simeq B ABnC使CTAC=B,AB,AB

2)性质

坐 标 变 换 任 意 一 个 二 次 型 x T A x , 都 可 以 通 过 配 方 法 可 逆 线 性 变 换 x = C y , 其 中 C 是 可 逆 阵 , 化 为 标 准 型 对 于 任 意 一 个 n 阶 实 对 称 矩 阵 A , 一 定 存 在 可 逆 阵 C , 使 得 C T A C = A , 即 实 对 称 矩 阵 一 定 合 同 于 对 角 阵 坐标变换\\ 任意一个二次型x^TAx,都可以通过配方法可逆线性变换x=Cy,其中C是可逆阵,化为标准型\\ 对于任意一个n 阶实对称矩阵A,一定存在可逆阵C,使得C^TAC=A,\\ 即实对称矩阵一定合同于对角阵 xTAx,线x=CyCnA,C,使CTAC=A
反 身 性 A ≃ B 反身性A\simeq B AB
对 称 性 : A ≃ B , 则 B ≃ A 对称性:A\simeq B,则B\simeq A AB,BA
传 递 性 : A ≃ B , B ≃ C ⇔ A ≃ C 传递性: A\simeq B,B\simeq C\Leftrightarrow A\simeq C :AB,BCAC
合 同 具 有 相 同 的 秩 合同具有相同的秩
任 一 个 二 次 型 X T A X 都 ∃ 坐 标 变 换 X = c y 化 为 标 准 型 y T Λ y = d 1 y 1 2 + d 2 y 2 2 + d 3 y 3 2 任一个二次型X^TAX都\exists 坐标变换X=cy 化为标准型\\ y^T\Lambda y=d_1y_1^2+d_2y_2^2+d_3y_3^2 XTAXX=cyyTΛy=d1y12+d2y22+d3y32

3)变换方法

配方法

f = x 1 2 + 3 x 2 2 + 3 x 3 2 + 2 x 1 x 2 − 4 x 1 x 3 f = [ x 1 2 + 2 x 1 ( x 2 − 2 x 3 ) + ( x 2 − 2 x 3 ) 2 ] + 3 x 2 2 + 3 x 3 2 − ( x 2 − 2 x 3 ) 2 f = ( x 1 + x 2 − 2 x 3 ) 2 + 2 x 2 − x 3 2 + 4 x 2 x 3 f = ( x 1 + x 2 − 2 x 1 ) 2 + 2 ( x 2 + x 3 ) 2 − 3 x 3 2 { y 1 = x 1 + x 2 − 2 x 3 y 2 = x 2 + x 3 y 3 = x 3 ⇔ { x 1 = y 1 − y 2 + 3 y 3 x 2 = y 2 − y 3 x 3 = y 3 f = y 1 2 + 2 y 2 2 − 3 y 3 2 f=x_1^2+3x_2^2+3x_3^2+2x_1x_2-4x_1x_3\\ f=[x_1^2+2x_1(x_2-2x_3)+(x_2-2x_3)^2]+3x_2^2+3x_3^2-(x_2-2x_3)^2\\ f=(x_1+x_2-2x_3)^2+2x_2-x_3^2+4x_2x_3\\ f=(x_1+x_2-2x_1)^2+2(x_2+x_3)^2-3x_3^2\\ \begin{cases}y_1=x_1+x_2-2x_3\\ y_2=x_2+x_3\\ y_3=x_3\end{cases} \Leftrightarrow \begin{cases}x_1=y_1-y_2+3y_3\\ x_2=y_2-y_3\\ x_3=y_3\end{cases}\\ f=y_1^2+2y_2^2-3y_3^2 f=x12+3x22+3x32+2x1x24x1x3f=[x12+2x1(x22x3)+(x22x3)2]+3x22+3x32(x22x3)2f=(x1+x22x3)2+2x2x32+4x2x3f=(x1+x22x1)2+2(x2+x3)23x32y1=x1+x22x3y2=x2+x3y3=x3x1=y1y2+3y3x2=y2y3x3=y3f=y12+2y223y32

用正交变换变换成二次型

x T A x = y T Λ y = λ 1 y 1 2 + λ 2 y 2 2 + λ 3 y 3 2 方 法 步 骤 1. 把 二 次 型 表 示 成 矩 阵 形 式 想 x T A x 2. 求 出 A 的 特 征 值 及 对 应 的 特 征 向 量 3. 对 重 根 的 特 征 向 量 正 交 化 , 4. 将 所 有 的 向 量 单 位 化 , 然 后 合 并 成 正 交 矩 阵 x^TAx=y^T\Lambda y=\lambda_1y_1^2+\lambda_2y_2^2+\lambda_3y^2_3 \\ 方法步骤1.把二次型表示成矩阵形式想x^TAx\\ 2.求出A 的特征值及对应的特征向量\\ 3.对重根的特征向量正交化,\\ 4.将所有的向量单位化,然后合并成正交矩阵 xTAx=yTΛy=λ1y12+λ2y22+λ3y321.xTAx2.A3.4.

6.3 正定二次型,正定矩阵

概念

对 于 任 意 非 零 向 量 x = [ x 1 , x 2 , ⋯   , x n ] T 恒 有 f ( x 1 , x 2 , ⋯   , x n ) = ∑ i = 1 n ∑ j = 1 n a i j x i x j = x T A x > 0 正 定 二 次 型 的 矩 阵 称 为 正 定 矩 阵 对于任意非零向量x=[x_1,x_2,\cdots,x_n]^T\\ 恒有f(x_1,x_2,\cdots,x_n)=\sum_{i=1}^{n}\sum_{j=1}^na_{ij}x_ix_j=x^TAx>0\\ 正定二次型的矩阵称为正定矩阵 x=[x1,x2,,xn]Tf(x1,x2,,xn)=i=1nj=1naijxixj=xTAx>0

反 对 称 矩 阵 ∣ A T ∣ = − A a i i = 0 , a i j = − a j i 反对称矩阵\mid A^T\mid =-A \\a_{ii}=0,a_{ij}=-a_{ji} AT=Aaii=0,aij=aji

性质

性质
正 定 二 次 型 主 对 角 线 a i i > 0 正定二次型主对角线a_{ii}>0 线aii>0
A 的 行 列 式 ∣ A ∣ > 0 A的行列式\mid A\mid >0 AA>0
充 要 条 件 是 A 的 主 子 式 全 部 大 于 0 , 特 征 值 全 部 大 于 0 充要条件是\\ A的主子式全部大于0,\\ 特征值全部大于0 A0,0
A − m ∗ n , r ( A ) = n A T A 是 正 定 矩 阵 A-m*n,r(A)=n\\ A^TA是正定矩阵 Amn,r(A)=nATA
A 是 正 定 矩 阵 , A − 1 是 正 定 矩 阵 A是正定矩阵,A^{-1}是正定矩阵 AA1
反 对 称 矩 阵 ∣ A ∣ = ( − 1 ) n ∣ A ∣ 反对称矩阵\mid A\mid =(-1)^n\mid A\mid A=(1)nA

6.4 例题

f ( x 1 , x 2 , x 3 ) = a x 1 2 + ( a − 1 ) x 2 2 + ( a + 2 ) x 3 2 的 规 范 性 为 y 1 2 − y 2 2 − y 3 2 a + 2 > a > a − 1 { a + 2 > 0 a < 0 a − 1 < 0 a ∈ ( − 2 , 0 ) f(x_1,x_2,x_3)=ax_1^2+(a-1)x_2^2+(a+2)x_3^2\\ 的规范性为y_1^2-y_2^2-y_3^2\\ a+2>a>a-1\\ \begin{cases}a+2>0\\ a<0\\ a-1<0\end{cases} \\ a\in(-2,0) f(x1,x2,x3)=ax12+(a1)x22+(a+2)x32y12y22y32a+2>a>a1a+2>0a<0a1<0a(2,0)

6.5 解法总结

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值