如何搜索相似的图片,如何通过识别图像搜索图片

最近有一张图片,想搜索这张图片的来源,搜索图片里的内容也没有搜索出来。比如搜索一个明星的照片,输入名字可以出来很多,但是有了图片想知道这个图片更多的信息,或者类似的图片,怎么搜索呢。

 

百度提供了一个办法,我试了试,也找到了我想要的信息。下面介绍一下。

 

 

方法一:

1 进入百度首页,在首页右上角找到“更多产品”,我们点击它



2 在出来的页面里点击图片


3 点击搜索框里面的照相机,我们通过它来上传图片


4 在页面里选择本地上传或者把要搜索的图片到此处



5 出现相关或相似的界面页面。

 

方法二:

1 进入百度首页,点击搜索框里的照相机


2 在页面里选择本地上传或者把要搜索的图片到这里


3 出现相关或相似的界面页面。








预处理:读取图片 第一步,缩小尺寸。 将图片缩小到8x8的尺寸,总共64个像素。这一步的作用是去除图片的细节,只保留结构、明暗等基本信息,摒弃不同尺寸、比例带来的图片差异。 第二步,简化色彩。 将缩小后的图片,转为64级灰度。也就是说,所有像素点总共只有64种颜色。 第三步,计算平均值。 计算所有64个像素的灰度平均值。 第四步,比较像素的灰度。 将每个像素的灰度,与平均值进行比较。大于或等于平均值,记为1;小于平均值,记为0。 第五步,计算哈希值。 将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图片的指纹。组合的次序并不重要,只要保证所有图片都采用同样次序就行了。 得到指纹以后,就可以对比不同的图片,看看64位中有多少位是不一样的。在理论上,这等同于计算"汉明距离"(Hammingdistance)。如果不相同的数据位不超过5,就说明两张图片相似;如果大于10,就说明这是两张不同的图片。 你可以将几张图片放在一起,也计算出他们的汉明距离对比,就可以看看两张图片是否相似。 这种算法的优点是简单快速,不受图片大小缩放的影响,缺点是图片的内容不能变更。如果在图片上加几个文字,它就认不出来了。所以,它的最佳用途是根据缩略图,出原图。 实际应用中,往往采用更强大的pHash算法和SIFT算法,它们能够识别图片的变形。只要变形程度不超过25%,它们就能匹配原图。这些算法虽然更复杂,但是原理与上面的简便算法是一样的,就是先将图片转化成Hash字符串,然后再进行比较。 以上内容大部分直接从阮一峰的网站上复制过来,想看原著的童鞋可以去在最上面的链接点击进去看。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值