化妆品行业的数据分析可以从以下维度进行:
1.用户属性:性别、年龄、地域、收入等。
2.销售渠道:线上、线下、专柜、自营等。
3.品牌热度:品牌知名度、口碑、市场份额。
4.产品品类:肤护、彩妆、香氛等。
5.季节特征:四季气候差异、传统节日等。
6.促销活动:满减、折扣、赠品、限时特价等。
7.竞争情况:同品类竞品情况、价格战、品牌宣传力度。
8.新品发布:新品上市时间、产品推广、接受程度。
9.用户行为:浏览量、购买量、购买频率、复购率、用户留存率。
10.口碑评价:用户评价、评分、趋势变化等。
维度:
品牌/产品类别:了解不同品牌或产品类别的表现、市场占有率等情况,以及哪些品牌或产品类别的销售最好。
地域/销售渠道:分析在不同地域或不同销售渠道下的销售情况,以及哪些地域或销售渠道的表现最好。
价格段:比较不同价格区间内的销售情况,了解消费者偏好的价格区间。
营销活动:分析不同营销活动对销售的影响,了解哪些活动对销售增长有帮助。
Power BI的DAX函数可以帮助我们进行如下的分析:
SUM函数:用于累加值,通过累加不同品牌或产品类别的销售额,比较它们的销售表现。
AVERAGE函数:计算平均值,帮助比较不同价格段内的平均销售额。
MAX/MIN函数:计算最大/最小值,帮助找出哪个品牌或产品类别的销售额最高/最低。
CALCULATE函数:可以根据不同条件筛选数据,比如只分析某个地域或销售渠道下的销售情况。
举例:可以使用DAX函数计算不同品牌的销售额占比,如下列公式:
Sales Proportion = SUM(Sales[SalesAmount]) / CALCULATE(SUM(Sales[SalesAmount]), ALL(Sales[Brand]))