小白必看:Python数据图表可视化+案例详解

对于人类来说,图案和文字这两种信息表现方式,图案应该更早于文字被发明,现代考古人员时常在山洞里发现原始人刻画的一些岩画。

总的来说,图案比文字更具有视觉冲击力和表现力,所以在计算机世界里,我们通常喜欢把文字数据转化为图表数据,用于向别人更加精准有效的传达数据信息。

今天我们就来讲讲在Python中如何把数据转换为可视化的图表。

本文知识点:

  • pyecharts简介与安装
  • pyecharts创建第一个图表
  • pyecharts的实际数据应用
pyecharts简介与安装

说到 pyecharts 要先提到它的前身 ECharts, ECharts是由百度开源的一款使用 JavaScript 实现的开源可视化库,涵盖了各种图表、满足各类业务需求,现在已经命名为Apache ECharts(由Apache基金会接管)。

而 pyecharts 就是 ECharts 在Python中的实现,其核心原理主要是写了一个Python的库,封装了ECharts各类图表的基本操作,然后通过渲染机制,输出一个包含JS代码的HTML文件,其核心思想还是借用了ECharts的底层库,只是用Python封装了一次之后便于本地应用程序使用罢了。

安装pyecharts很简单,直接pip即可

pip install pyecharts

file

现在pyecharts的最新版本是 1.7.1 需要Python3.6+的环境运行。

pyecharts创
  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
当今Python中最流行的数据可视化库是 Matplotlib 和 Seaborn。Matplotlib是一个功能强大的绘图库,可以创建各种类型的图表,而 Seaborn 则是基于 Matplotlib 的高级数据可视化库,提供了更简单、更美观的绘图风格以及更多的统计图表。 下面是一些 Python 数据可视化分析案例详解: 1. 折线图 折线图是一种经典的数据可视化方式,可以用于表示随时间变化的数据。下面是一个使用 Matplotlib 绘制折线图的例子: ```python import matplotlib.pyplot as plt x = [1, 2, 3, 4, 5] y = [3, 7, 2, 5, 9] plt.plot(x, y) plt.show() ``` 上述代码将绘制一个简单的折线图,横坐标是 x 列表,纵坐标是 y 列表。 2. 散点图 散点图是一种用于表示两个变量之间关系的方式,通常用于探索数据中的趋势和异常值。下面是一个使用 Seaborn 绘制散点图的例子: ```python import seaborn as sns tips = sns.load_dataset("tips") sns.scatterplot(x="total_bill", y="tip", data=tips) ``` 上述代码将绘制一个餐厅账单和小费之间的散点图,横坐标是账单总金额,纵坐标是小费金额。 3. 直方图 直方图是一种用于表示连续变量分布的方式,通常用于了解数据的分布情况。下面是一个使用 Matplotlib 绘制直方图的例子: ```python import matplotlib.pyplot as plt import numpy as np data = np.random.randn(1000) plt.hist(data, bins=30) plt.show() ``` 上述代码将绘制一个随机生成的数据集的直方图,bin 参数指定直方图的柱数。 4. 箱线图 箱线图是一种用于表示数据分布和异常值的方式,通常用于比较多个组之间的差异。下面是一个使用 Seaborn 绘制箱线图的例子: ```python import seaborn as sns tips = sns.load_dataset("tips") sns.boxplot(x="day", y="total_bill", data=tips) ``` 上述代码将绘制一个表示不同周几账单总金额分布情况的箱线图。 5. 热力图 热力图是一种用于表示数据密度的方式,通常用于探索数据的相关性。下面是一个使用 Seaborn 绘制热力图的例子: ```python import seaborn as sns flights = sns.load_dataset("flights").pivot("month", "year", "passengers") sns.heatmap(flights, annot=True, fmt="d", cmap="YlGnBu") ``` 上述代码将绘制一个表示航班乘客数量的热力图,横坐标是年份,纵坐标是月份。 以上是一些 Python 数据可视化分析的例子,您可以根据具体需求选择不同的图表类型和绘图库。同时,这些例子只是入门级别,数据可视化的应用场景非常广泛,您可以在实践中不断发掘更多的用法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值