蓝桥杯 数字接龙

问题描述

小蓝最近迷上了一款名为《数字接龙》的迷宫游戏。

游戏在一个大小为 N × N 的格子棋盘上展开,其中每一个格子处都有一个 0K-1 之间的整数。

游戏规则如下:

  • 从左上角 (0, 0) 出发,目标是到达右下角 (N-1, N-1)

  • 每一步可以选择沿 水平、垂直或对角线 方向移动到下一个格子(共 8 个方向)。

  • 路径经过的棋盘格子,其上面的数字必须按顺序组成如下循环序列:

    0, 1, 2, ..., K-1, 0, 1, 2, ..., K-1, ...
    
  • 途中需要对棋盘上的 每个格子恰好经过一次(仅一次)。

  • 路径中不允许出现交叉线路

例如:若曾从 (0,0) 移动到 (1,1),则不能再从 (1,0) 移动到 (0,1),因为这样会形成交叉。

为方便表示,我们对可以行进的所有八个方向编号如下

在这里插入图片描述

因此,行进路径可以用一个包含 07 的数字字符串来表示。


输入格式

第一行包含两个整数 NK,分别表示棋盘的边长和数字序列的周期长度。

接下来 N 行,每行 N 个整数,表示棋盘格子上的数字。


输出格式

输出一行表示答案路径,用方向编号组成的字符串表示。

  • 如果存在多条合法路径,输出字典序最小的那一个;
  • 如果不存在任何合法路径,输出 -1

样例输入

3 3
0 2 0
1 1 1
2 0 2

样例输出

41255214

样例说明

行进路径如图所示,路径编号为:4 → 1 → 2 → 5 → 5 → 2 → 1 → 4


评测用例规模与约定

  • 对于 80% 的评测用例:1 ≤ N ≤ 5
  • 对于 100% 的评测用例:1 ≤ N ≤ 10, 1 ≤ K ≤ 10

c++代码

#include<iostream>
#include<vector>
#include<string>

using namespace std;

int N, K;

vector<vector<int>> arr;
vector<vector<vector<int>>> know;
string ans = "-1", mid;


void dfs(int i, int j, int msg, string ops, int lasti, int lastj) {
    if (ans != "-1" || i < 0 || i >= N || j < 0 || j >= N || know[i][j][0] != -1 || arr[i][j] != msg) return;
    mid += ops;
    if (i > 0 || j > 0) know[lasti][lastj][0] = i, know[lasti][lastj][1] = j;
    if (mid.size() == N * N - 1 && i == N - 1 && j == N - 1) {
        ans = mid;
        return;
    }
    if (msg == K - 1) msg = 0;
    else msg++;
    dfs(i - 1, j, msg, "0", i, j);
    if (i - 1 >= 0 && j + 1 < N && !((know[i][j + 1][0] == i - 1 && know[i][j + 1][1] == j) || (know[i - 1][j][0] == i && know[i - 1][j][1] == j + 1))) dfs(i - 1, j + 1, msg, "1", i, j);
    dfs(i, j + 1, msg, "2", i, j);
    if (i + 1 < N && j + 1 < N && !((know[i][j + 1][0] == i + 1 && know[i][j + 1][1] == j) || (know[i + 1][j][0] == i && know[i + 1][j][1] == j + 1))) dfs(i + 1, j + 1, msg, "3", i, j);
    dfs(i + 1, j, msg, "4", i, j);
    if (i + 1 < N && j - 1 >= 0 && !((know[i][j - 1][0] == i + 1 && know[i][j - 1][1] == j) || (know[i + 1][j][0] == i && know[i + 1][j][1] == j - 1))) dfs(i + 1, j - 1, msg, "5", i, j);
    dfs(i, j - 1, msg, "6", i, j);
    if (i - 1 >= 0 && j - 1 >= 0 && !((know[i][j - 1][0] == i - 1 && know[i][j - 1][1] == j) || (know[i - 1][j][0] == i && know[i - 1][j][1] == j - 1))) dfs(i - 1, j - 1, msg, "7", i, j);
    if (mid.size() > 0) mid.erase(mid.size() - 1);
    if (i > 0 || j > 0) know[lasti][lastj][0] = -1, know[lasti][lastj][1] = -1;
}

int main() {
    cin >> N >> K;
    arr = vector<vector<int>>(N, vector<int>(N));
    know = vector<vector<vector<int>>>(N, vector<vector<int>>(N, vector<int>(2, -1)));
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++) {
            cin >> arr[i][j];
        }
    }
    dfs(0, 0, 0, "", -1, -1);
    cout << ans;
    return 0;
}//by wqs

算法思路

这本质上是一道dfs搜索题

比较有难度的是如何保证不交叉

我们用一个三维数组vector<vector<vector<int>>> know;
know[i][j][0] = a, know[i][j][1] = b;
如果a == -1 && b == -1说明当前节点没有访问
否则存在一条从点(a, b)到(i,j)的有向连线。
我们根据这个数组的状态去判断是否有交叉
1. 请写1个支付宝接龙红包程序. 随机产生1-100的随机数,作为红包金额. 让用户不断的去猜,直到猜正确为止.最后发给用户的红包金额是 红包金额/猜得次数. 2. 循环录入5个人的年龄并计算平均年龄,如果录入的数据出现负数或大于100的数,立即停止输入并报错. 3. 实现要求用户一直输入QQ号码和密码,只要不是123456、888888就一直提示要求重新输入,如果正确则提登录成功. 4. 1-100之间不能够被7整除的数的和. 5. 求1-200之间的所有的整数的累加和 6. 求1-100之间6的倍数的个数 7. 输入班级人数,然后依次输入学员成绩,计算班级学员的平均成绩和总成绩 8. 2006年培养学员80000人,每年增长25%,请问按此增长速度,到哪一年培训学员人数将达到20万人?*** 9. 从键盘输入10个数,求出最大数 10. 1000~ 5000之间有多少整数,其各位数字之和为5,分别是哪些数(例如整数2003的各位数字之和为 2+0+0+3 ,等于5)), 并统计满足条件的整数有多少个。 11. 求1-100中 是7的倍数 的数值之和 12. 求1-1000之间的所有的奇数之和 13.猜数字游戏. 随机产生1个1-100之间的数 让用户猜 当用户输入的数比产生的随机数大 就输出 猜大了 并让用户继续输入新的数.。 当用户输入的比产生的随机数小的时候 就输出 猜小了 并且继续猜 当用户刚好输入的就是这个随机数的时候 提示成功 并显示用户猜了多少次. 14. 老师问学生,这道题你会做了吗? 如果学生答"会了(y)",则可以放学. 如果学生不会做(n),则老师再讲一遍,再问学生是否会做了......直到学生会为止,才可以放学. 直到学生会或老师给他讲了10遍还不会,都要放学 15. 写1个程序. 随机的产生1个2位数的加法运算.让用户输入这个运算的结果 然后判断这个结果是否正确. 来10次. 每个人默认有10分. 产生10个加法运算.操作数的范围在0-100之间. 每产生1个加法运算 就让用户输入结果.判断是否正确. 当回答正确的时候就为用户加1分. 错误的时候就扣1分. 当10道题目回答完毕之后 就显示用户得的分数. ***
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值