强化学习原理python篇06(拓展)——DQN拓展

强化学习原理python篇06(拓展)——DQN拓展


拓展篇参考赵世钰老师的教材和Maxim Lapan 深度学习强化学习实践(第二版),请各位结合阅读,本合集只专注于数学概念的代码实现。

n-steps

在这里插入图片描述
假设在训练开始时,顺序地完成前面的更新,前两个更新是没有用的,因为当前Q(s2, a)和Q(s2, a)是不对的,并且只包含初始的随机值。唯一有用的更新是第3个更新,它将奖励r3正确地赋给终结状态前的状态s3。
现在来完成一次又一次的更新。在第2次迭代,正确的值被赋给了Q(s2, a),但是Q(s1, a)的更新还是不对的。只有在第3次迭代时才能给所有的Q赋上正确的值。所以,即使在1步的情况下,它也需要3步才能将正确的值传播给所有的状态。

为此,修改第四步
4)将转移过程(s, a, r, s’)存储在回放缓冲区中 r 用 n 步合计展示。

代码

修改ReplayBuffer和DQN中的calculate_y_hat_and_y实现

class ReplayBuffer:
    def __init__(self, episode_size, replay_time):
        # 存取 queue episode
        self.queue = []
        self.queue_size = episode_size
        self.replay_time = replay_time

    def get_batch_queue(self, env, action_trigger, batch_size, epsilon):
        def insert_sample_to_queue(env):
            state, info = env.reset()
            stop = 0
            episode = []

            while True:
                if np.random.uniform(0, 1, 1) > epsilon:
                    action = env.action_space.sample()
                else:
                    action = action_trigger(state)

                next_state, reward, terminated, truncated, info = env.step(action)
                episode.append([state, action, next_state, reward, terminated])
                state = next_state
                if terminated:
                    state, info = env.reset()
                    self.queue.append(episode)
                    episode = []
                    stop += 1
                    continue
                if stop >= replay_time:
                    self.queue.append(episode)
                    episode = []
                    break

        def init_queue(env):
            while True:
                insert_sample_to_queue(env)
                if len(self.queue) >= self.queue_size:
                    break

        init_queue(env)
        insert_sample_to_queue(env)
        self.queue = self.queue[-self.queue_size :]

        return random.sample(self.queue, batch_size)



class DQN:
    def __init__(self, env, obs_size, hidden_size, q_table_size):
        self.env = env
        self.net = Net(obs_size, hidden_size, q_table_size)
        self.tgt_net = Net(obs_size, hidden_size, q_table_size)

    # 更新net参数
    def update_net_parameters(self, update=True):
        self.net.load_state_dict(self.tgt_net.state_dict())

    def get_action_trigger(self, state):
        state = torch.Tensor(state)
        action = int(torch.argmax(self.tgt_net(state).detach()))
        return action

    # 计算y_hat_and_y
    def calculate_y_hat_and_y(self, batch, gamma):
        # n_step
        state_space = []
        action_spcae = []
        y = []

        for episode in batch:
            random_n = int(np.random.uniform(0, len(episode), 1))
            episode = episode[-random_n:]
            state, action, next_state, reward, terminated = episode[-1]
            q_table_net = dqn.net(torch.Tensor(next_state)).detach()
            reward = reward + (1 - terminated) * gamma * float(torch.max(q_table_net))
            episode[-1] = state, action, next_state, reward, terminated
            reward_space = [_[3] for _ in episode]
            r_n_steps = discount_reward(reward_space, gamma)
            y.append(r_n_steps)
            state, action, next_state, reward, terminated = episode[0]
            state_space.append(state)
            action_spcae.append(action)

        y_hat = self.tgt_net(torch.Tensor(np.array(state_space)))
        y_hat = y_hat.gather(1, torch.LongTensor(action_spcae).reshape(-1, 1))
        return y_hat.reshape(-1), torch.tensor(y)

    def predict_reward(self):
        state, info = env.reset()
        step = 0
        reward_space = []

        while True:
            step += 1
            state = torch.Tensor(state)
            action = int(torch.argmax(self.net(state).detach()))
            next_state, reward, terminated, truncated, info = env.step(action)
            reward_space.append(reward)
            state = next_state
            if terminated:
                state, info = env.reset()
                continue
            if step >= 100:
                break
        return float(np.mean(reward_space))

结果

以相同的参数进行训练
请添加图片描述
绿色的线为n-steps DQN,发现比普通DQN收敛速度显著提高。

Double-DQN

由于普通DQN是一种boostrap方法来更新自己的值,在

6)对于回放缓冲区中的每个转移过程,如果片段在此步结束,则计算目标 y = r y=r y=r,否则计算 y = r + γ m a x Q ^ ( s , a , w ) y=r+\gamma max \hat Q(s, a, w) y=r+γmaxQ^(s,a,w)

过程中max步骤,又扩大了该高估的误差影响,为了解决该问题,Deep Reinforcement Learning with Double Q-Learning论文的作者建议使用训练网络来选择动作,但是使用目标网络的Q值。所以新的目标Q值为

Q ( s t , a t ) = r t + γ Q ′ ( s t + 1 , arg max ⁡ a Q ( s t + 1 , a ) ) Q(s_t,a_t) = r_t+\gamma Q'(s_{t+1}, \argmax \limits_{a} Q(s_{t+1}, a)) Q(st,at)=rt+γQ(st+1,aargmaxQ(st+1,a))

代码

修改第六步

class DQN:
    def __init__(self, env, obs_size, hidden_size, q_table_size):
        self.env = env
        self.net = Net(obs_size, hidden_size, q_table_size)
        self.tgt_net = Net(obs_size, hidden_size, q_table_size)

    # 更新net参数
    def update_net_parameters(self, update=True):
        self.net.load_state_dict(self.tgt_net.state_dict())

    def get_action_trigger(self, state):
        state = torch.Tensor(state)
        action = int(torch.argmax(self.tgt_net(state).detach()))
        return action

    # 计算y_hat_and_y
    def calculate_y_hat_and_y(self, batch, gamma):
        y = []
        action_sapce = []
        state_sapce = []
        ## 
        for state, action, next_state, reward, terminated in batch:
            q_table_net = self.net(torch.Tensor(next_state)).detach()
            ## double DQN 
            tgt_net_action = self.get_action_trigger(next_state)
            y.append(reward + (1 - terminated) * gamma * float(q_table_net[tgt_net_action]))
            action_sapce.append(action)
            state_sapce.append(state)
        y_hat = self.tgt_net(torch.Tensor(np.array(state_sapce)))
        y_hat = y_hat.gather(1, torch.LongTensor(action_sapce).reshape(-1, 1))
        return y_hat.reshape(-1), torch.tensor(y)

    def predict_reward(self):
        state, info = env.reset()
        step = 0
        reward_space = []

        while True:
            step += 1
            state = torch.Tensor(state)
            action = int(torch.argmax(self.net(state).detach()))
            next_state, reward, terminated, truncated, info = env.step(action)
            reward_space.append(reward)
            state = next_state
            if terminated:
                state, info = env.reset()
                continue
            if step >= 100:
                break
        return float(np.mean(reward_space))

结果

请添加图片描述

Dueling-DQN

这个对DQN的改进是在2015年的“Dueling Network Architectures for Deep Reinforcement Learning”论文中提出的。

该论文的核心发现是,神经网络所试图逼近的Q值Q(s, a)可以被分成两个量:状态的价值V(s),以及这个状态下的动作优势A(s, a)。

在同一个状态下,所有动作的优势值之和为,因为所有动作的动作价值的期望就是这个状态的状态价值。

这种约束可以通过几种方法来实施,例如,通过损失函数。但是在论文中,作者提出一个非常巧妙的解决方案,就是从神经网络的Q表达式中减去优势值的平均值,它有效地将优势值的平均值趋于0。

Q ( s , a ) = V ( a ) + A ( s , a ) − 1 n ∑ a ′ A ( s , a ′ ) Q(s,a) = V(a)+A(s,a)-\frac{1}{n}\sum _{a'}A(s,a') Q(s,a)=V(a)+A(s,a)n1aA(s,a)

这使得对基础DQN的改动变得很
简单:为了将其转换成Dueling DQN,只需要改变神经网络的结构,而
不需要影响其他部分的实现。

代码

class DuelingNet(nn.Module):
    def __init__(self, obs_size, hidden_size, q_table_size):
        super().__init__()

        # 动作优势A(s, a)
        self.a_net = nn.Sequential(
            nn.Linear(obs_size, hidden_size),
            nn.ReLU(),
            nn.Linear(hidden_size, q_table_size),
        )

        # 价值V(s)
        self.v_net = nn.Sequential(
            nn.Linear(obs_size, hidden_size),
            nn.ReLU(),
            nn.Linear(hidden_size, 1),
        )

    def forward(self, state):
        if len(torch.Tensor(state).size())==1:
            state = state.reshape(1,-1)
        v = self.v_net(state)
        a = self.a_net(state)
        mean_a = a.mean(dim=1,keepdim=True)
        # torch.mean(a, axis=1).reshape(-1, 1)
        return v + a - mean_a  

结果

请添加图片描述

Ref

[1] Mathematical Foundations of Reinforcement Learning,Shiyu Zhao
[2] 深度学习强化学习实践(第二版),Maxim Lapan

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值