强化学习,快速入门与基于python实现一个简单例子(可直接运行)


一、什么是“强化学习”

本文要记录的大概内容:

强化学习是一种机器学习方法,旨在让智能体通过与环境的交互学习如何做出最优决策以最大化累积奖励。在强化学习中,智能体通过尝试不同的行动并观察环境的反馈(奖励或惩罚)来学习。它不依赖于预先标记的训练数据,而是通过与环境的实时交互进行学习。

强化学习的核心概念包括以下几个要素:

智能体(Agent):执行动作并与环境进行交互的学习主体。
环境(Environment):智能体所处的外部环境,它对智能体的动作做出反应,并提供奖励或惩罚信号。
状态(State):在特定时间点,环境所处的情境或配置,用于描述环境的特征。
动作(Action):智能体在某个状态下可以执行的操作或决策。
奖励(Reward):环境根据智能体的动作提供的反馈信号,用于评估动作的好坏。
策略(Policy):智能体采取行动的方式或决策规则,它映射状态到动作的选择。
价值函数(Value Function):评估在特定状态下采取特定动作的长期价值或预期回报。
Q值(Q-Value):表示在给定状态下采取特定动作的预期回报值。

强化学习的目标是通过学习最优策略或价值函数来使智能体能够在不同的状态下做出最佳决策,以最大化累积奖励。学习过程通常使用基于迭代的方法,例如Q-learning、SARSA、深度强化学习等。强化学习在许多领域具有广泛的应用,包括自动驾驶、机器人控制、游戏智能以及优化和决策问题等。


以下是本篇文章正文内容

二、强化学习包括的组成部分

当涉及到设计一个完整的强化学习过程时,需要考虑多个方面,包括环境、代理程序、奖励函数、状态空间、动作空间等。为了提供一个简单而完整的示例,下面以设计一个基于强化学习的迷宫求解问题为例进行分析:

环境 Environment:

我们选择一个简单的方格迷宫作为环境。迷宫由多个方格组成,其中包括起点和终点。
迷宫中可能存在障碍物,代表着无法通过的区域。
环境会提供代理程序当前的状态信息,并接受代理程序的动作。

代理程序 Agent:

代理程序就是智能体,就是我们所设计算法
我们设计一个简单的代理程序,它会根据当前的状态选择一个动作。
代理程序将使用强化学习算法来学习如何在迷宫中移动,以找到终点。
在这个示例中,我们将使用Q-learning算法作为强化学习算法。

状态空间 state_space:

状态空间定义了代理程序可能处于的不同状态。在迷宫中,状态可以表示为当前的位置坐标。
动作空间定义了代理程序可以执行的不同动作。

动作空间 action_space:

在迷宫中,可选的动作可以是上、下、左、右四个方向的移动。

奖励函数 reward:

我们定义奖励函数来指导代理程序的学习过程。
当代理程序达到终点时,奖励为正值,表示取得了成功。
当代理程序遇到障碍物时,奖励为负值,表示不可行的移动。
其他情况下,奖励为零。

这是一个基本的强化学习过程的设计示例。要使其运行,需要实现Q-learning算法和迷宫环境的交互逻辑,并根据定义的状态空间、动作空间和奖励函数进行训练和学习,下面介绍Q-Learning算法。

二、Q-Learning算法

Q-Learning(Q学习)是一种强化学习算法,用于解决马尔可夫决策过程(MDP)。它是一种无模型算法,意味着它不需要显式地了解环境动态。Q-Learning的目标是学习一个最优的动作值函数,称为Q函数,它表示在给定状态下采取特定动作的预期累积奖励。Q-Learning的主要目标是学习一个能够最大化累积奖励的策略。

注意: 传统的Q-Learning算法不涉及深度学习的知识

以下是Q-Learning算法的详细步骤:

  1. 初始化:对所有状态(s)和动作(a),使用任意值初始化Q函数,记作Q(s, a)。通常,Q函数以表格或矩阵的形式表示。

  2. 探索与利用:选择在当前状态下执行的动作。在探索与利用之间存在一个权衡。初期通常会更多地进行探索,以便探索不同的状态和动作,随着学习的进行逐渐增加利用已知的高价值动作。

  3. 执行动作:根据选择的动作,与环境进行交互,观察下一个状态(s’)和获得的即时奖励(r)。

  4. 更新Q函数:使用Q-Learning更新Q函数的值。根据观察到的即时奖励和下一个状态的最大Q值,更新当前状态和动作的Q值。更新公式为:Q(s, a) = (1 - α) * Q(s, a) + α * (r + γ * max(Q(s’, a’))),其中α是学习率(控制新信息的重要性),γ是折扣因子(控制未来奖励的重要性)。

  5. 转移到下一个状态:将当前状态更新为下一个状态,继续执行步骤2-4,直到达到终止状态或达到指定的停止条件。

  6. 收敛:通过不断地与环境交互和更新Q函数,最终Q函数会收敛到最优的动作值函数,表示了在每个状态下采取最佳动作的预期累积奖励。

Q-Learning算法的核心思想是基于试错学习,通过与环境的交互不断优化动作策略,以获得最大的累积奖励。通过迭代更新Q函数,Q-Learning能够学习到最优的策略,从而在复杂的环境中实现自主决策。

三、迷宫-强化学习-Q-Learning算法的实现

全部代码(复制可用)

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import joblib

# 定义迷宫环境
class MazeEnvironment:
    def __init__(self):
        self.grid = np.array([
            [0, 0, 0, 0, 0],
            [0, -1, -1, -1, 0],
            [0, 0, 0, 0, 0],
            [0, -1, -1, -1, 1],
            [0, 0, 0, 0, 0]
        ])  # 0表示可通过的空格,-1表示障碍物,1表示目标

        self.state_space = np.argwhere(self.grid == 0).tolist()  # 可用的状态空间
        self.victory = np.argwhere(self.grid == 1).tolist()
        self.state_space.extend(self.victory)  # # 最终可用的状态空间
        self.action_space = ['up', 'down', 'left', 'right']  # 动作空间
        self.num_states = len(self.state_space)
        self.num_actions = len(self.action_space)
        self.current_state = None

    def reset(self):
        self.current_state = [0, 0]  # 设置起始状态
        return self.current_state

    def step(self, action):
        if action == 'up':
            next_state = [self.current_state[0] - 1, self.current_state[1]]
        elif action == 'down':
            next_state = [self.current_state[0] + 1, self.current_state[1]]
        elif action == 'left':
            next_state = [self.current_state[0], self.current_state[1] - 1]
        elif action == 'right':
            next_state = [self.current_state[0], self.current_state[1] + 1]

        # 检查下一个状态是否合法
        if (
            next_state[0] < 0
            or next_state[0] >= self.grid.shape[0]
            or next_state[1] < 0
            or next_state[1] >= self.grid.shape[1]
            or self.grid[tuple(next_state)] == -1
        ):
            next_state = self.current_state

        # 判断是否到达目标状态
        done = (self.grid[tuple(next_state)] == 1)

        self.current_state = next_state
        return next_state, int(done)

# 定义强化学习代理程序
class QAgent:
    def __init__(self, state_space, action_space):
        self.state_space = state_space
        self.action_space = action_space
        self.num_states = len(state_space)
        self.num_actions = len(action_space)
        self.q_table = np.zeros((self.num_states, self.num_actions))

    def choose_action(self, state, epsilon=0.1):
        if np.random.uniform(0, 1) < epsilon:
            action = np.random.choice(self.action_space)
        else:
            state_idx = self.state_space.index(state)
            q_values = self.q_table[state_idx]
            max_q = np.max(q_values)
            max_indices = np.where(q_values == max_q)[0]
            action_idx = np.random.choice(max_indices)
            action = self.action_space[action_idx]

        return action

    def update_q_table(self, state, action, next_state, reward, learning_rate, discount_factor):
        state_idx = self.state_space.index(state)
        next_state_idx = self.state_space.index(next_state)
        q_value = self.q_table[state_idx, self.action_space.index(action)]
        max_q = np.max(self.q_table[next_state_idx])
        new_q = q_value + learning_rate * (reward + discount_factor * max_q - q_value)
        self.q_table[state_idx, self.action_space.index(action)] = new_q

# 训练强化学习代理程序
def train_agent(agent, environment, num_episodes, learning_rate, discount_factor, epsilon):
    for episode in range(num_episodes):
        state = environment.reset()
        done = False

        while not done:
            action = agent.choose_action(state, epsilon)

            next_state, reward = environment.step(action)

            # 更新 Q 值表
            agent.update_q_table(state, action, next_state, reward, learning_rate, discount_factor)
            state = next_state  # 更新当前状态为下一个状态

            if reward == 1:  # 到达目标状态,结束当前回合
                done = True

    joblib.dump(agent, './Agent.agt') # 保存智能体

# 创建迷宫环境实例
maze_env = MazeEnvironment()

# 创建强化学习代理实例
agent = QAgent(maze_env.state_space, maze_env.action_space)

# 训练强化学习代理
num_episodes = 1000
learning_rate = 0.1
discount_factor = 0.9
epsilon = 0.1  # 在强化学习中,ε(epsilon)通常用于控制智能体在选择动作时的探索与利用的平衡。

train_agent(agent, maze_env, num_episodes, learning_rate, discount_factor, epsilon)

可用状态空间

self.state_space = np.argwhere(self.grid == 0).tolist()
在这里插入图片描述

检查是否超出边界

在这里插入图片描述

epsilon 的含义

在强化学习中,ε(epsilon)通常用于控制智能体在选择动作时的探索与利用的平衡。

ε-greedy策略是一种常见的动作选择策略,其中ε表示以随机动作进行探索的概率,而1-ε表示以具有最高Q值的动作进行利用的概率。

具体含义如下:

当随机数小于ε时,智能体会随机选择一个动作,以便在尚未探索或不确定的状态下进行探索。这有助于发现新的、可能更好的动作。
当随机数大于或等于ε时,智能体会选择具有最高Q值的动作,以利用已经学到的知识和经验。
ε的取值范围通常为0到1之间,根据具体问题和需求进行调整。较小的ε值会更倾向于利用已知的最优动作,而较大的ε值会更倾向于探索未知的动作。

需要注意的是

在训练初期,智能体通常会更多地进行探索,因此ε的初始值可能会较高,随着训练的进行逐渐减小,以便智能体更多地进行利用。

示例:

假设ε的值为0.2,即以20%的概率进行随机动作选择,80%的概率进行利用。
在某个状态下,智能体根据ε-greedy策略进行动作选择:

如果随机数小于0.2,智能体会以20%的概率随机选择一个动作进行探索。
如果随机数大于等于0.2,智能体会以80%的概率选择具有最高Q值的动作进行利用。
通过调整ε的值,可以在探索与利用之间找到适当的平衡,以使智能体能够有效地学习和提高性能。

更新方程

new_q = q_value + learning_rate * (reward + discount_factor * max_q - q_value)
self.q_table[state_idx, self.action_space.index(action)] = new_q

这行代码使用贝尔曼方程更新当前状态和动作对应的Q值。贝尔曼方程表示当前状态和动作的Q值等于当前收益加上折扣因子乘以下一个状态的最大Q值,再减去当前状态和动作的Q值。学习率乘以这个差值,控制了新Q值的更新速度。最后,将更新后的Q值存储回Q表中,以便在后续的训练中使用。

总结

  • 21
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 深度学习是一种机器学习技术,可以通过模拟人类大脑的神经网络结构来实现智能决策和预测。Python是一种广泛使用的编程语言,也是深度学习中使用最多的语言之一。 如果你想入门深度学习并使用Python进行实现,可以参考一些经典的教材和资源,例如《Python深度学习》(Francois Chollet著)、《深度学习入门:基于Python的理论与实现》(斋藤康毅著)等。这些教材通常会介绍深度学习的基础理论、Python的基本语法和深度学习框架(如TensorFlow、Keras等)的使用方法,同时也会提供一些实例代码和练习题帮助你快速上手。 此外,你也可以通过在线课程和MOOC平台学习深度学习和Python编程。例如,Coursera、Udacity和edX等平台都提供了相关课程,可以根据自己的需求和兴趣进行选择。 ### 回答2: 深度学习入门:基于Python的理论与实现,是一本介绍深度学习的较为全面的教程。本书主要介绍了人工神经网络,包括基于反向传播算法的多层感知器、卷积神经网络、循环神经网络等基本模型以及它们的实现方法,同时还介绍了一些高级话题,如深度强化学习、生成模型等等。 在本书中,作者通过大量的编程实例来演示深度学习的应用。这些实例包括用深度学习算法进行手写数字识别、图像分类、语音识别和自然语言处理等任务。由于Python是目前流行的机器学习工具之一,因此这本书的实现过程都使用了Python编程语言。 具体来说,本书的主要内容包括人工神经网络基础知识、多层感知器模型、卷积神经网络模型、循环神经网络模型、生成模型、 强化学习、深度学习框架等方面,同时还包括很多深度学习的应用案例。作者采用了基础理论、数学公式、实例程序和实验数据等不同形式的阐释方法,使读者既能够理解深度学习的基本原理,也能够掌握它的实现方法。 此外,本书还提供了大量的参考文献和网上资源,使读者可以进一步深入学习和研究深度学习。在阅读本书的同时,读者可以根据作者提供的代码和数据,通过实际操作来进一步巩固理论知识和应用技能。 总之,深度学习入门:基于Python的理论与实现是一本非常实用的深度学习教材,可以帮助初学者更好地了解深度学习的基本概念和方法,提高实际应用的技能。 ### 回答3: 深度学习是一种人工智能技术,可用于训练计算机识别和理解大量数据。《深度学习入门:基于Python的理论与实现》这本书是入门者学习深度学习的必读之书。以下是本书的内容概述。 本书的第一部分介绍了深度学习的基础概念和理论,包括神经网络、反向传播算法、损失函数等。介绍了基本的深度学习模型,如前馈神经网络、卷积神经网络和循环神经网络。此外,还介绍了优化算法和正则化技术。 在第二部分中,作者使用Python编程语言实现了各种深度学习模型,使用的是许多广泛使用的深度学习框架,如TensorFlow和PyTorch。学习者获得从头开始编写深度学习算法的经验,同时实际应用中必备的PyTorch和TensorFlow经验。 在第三部分中,本书涵盖了几个应用案例,包括图像分类、语音识别和自然语言处理。幸运的是,这些案例通过代码演示展示,确保即使您没有实际应用经验也能操作成功。 总的来说,《深度学习入门:基于Python的理论与实现》是一本适合想要学习深度学习的初学者的绝佳书籍。其提供了深度学习的基本理论和核心技术,同时应用Python编程语言演示了实现技术。由此学习者可以建立深度学习专业的技术栈和能力,在人工智能领域有更广阔的发展空间。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_刘文凯_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值