因为需要进行大量的实验,数据集的规模也比较大,因此近期打算看看有没有云上的算力可用。
Kaggle是一个不错的选择,大概一周有几十个小时,作为补充的时长跑一些对比实验很够了。
网址
https://www.kaggle.com/
新建jupyter notebook
这里可以链接自己的github账号,在新的notebook里,选择File -> Link to Github
,输入密码授权即可。
传入自己的代码
推荐从git clone过去
公有仓库直接用 git clone: 这里不能使用git@
的形式,要用https://github.com/username/reponame.git
私有仓库需要在github.com/setting/token申请一个token,权限选择第一个大项repo相关的即可,然后在kaggle的notebook里用!git clone "https://tokenvalue@github.com/username/reponame.git"
就可以拉下项目了。
这里记得如果是公开的notebook运行后及时删除命令行,以防token泄露。
然后就会发现output里有对应下拉项目的文件夹:
点击1 more可能打不开,多点两次就可以了,也可以在notebook里也可以查看对应的路径:
更改代码或者传入新的文件
传入的数据或者配置文件将会在input文件里。
在jupyter notebook里,无法切换目录,所以都使用绝对目录地址即可。
环境配置
!conda list
查看目前已经安装的包,pytorch-light是安装了的,如果想安装没有的包,比如pytorch geometric,可以在数据集里搜索对应的whl文件,引入后直接pip install
就可以安装了。
执行代码
!python kaggle/working/.../train.py
就可以正常运行了,即使关掉浏览器也会继续运行的,只是输出会变换到下方的console里,而非在jupyter notebook中。