加权随机采样

以下是一个简单的随机加权采样的Python代码示例: ```python import random def weighted_random_sampling(weights, k): """ :param weights: A list of non-negative weights. :param k: The number of samples to draw. :return: A list of indices indicating the sampled elements. """ if k > len(weights): raise ValueError("k should be no greater than the length of weights.") cum_weights = [0] + list(accumulate(weights)) total_weight = cum_weights[-1] indices = [] for _ in range(k): rand = random.uniform(0, total_weight) for i, cum_weight in enumerate(cum_weights): if rand < cum_weight: indices.append(i - 1) total_weight -= weights[i - 1] cum_weights = [0] + list(accumulate(weights[:i - 1])) + [total_weight] weights = weights[:i - 1] + weights[i:] break return indices ``` 该函数的输入参数为权重列表和需要采样的数量。输出为一个采样结果的索引列表。 该函数的实现基于累计权重的概念。首先,通过累加所有权重,创建一个新的列表cum_weights。然后,将列表中的每个权重除以总权重,从而获得一个累计权重列表。这个累计权重列表中的每个条目表示前面所有权重的总和。 对于每个采样,生成一个随机rand,介于0和总权重之间。然后,遍历累计权重列表,找到第一个大于rand的条目(即对应的权重),并将其对应的索引添加到结果列表中。接下来,将该索引对应的权重从权重列表中删除,并更新cum_weights和total_weight。在下一次迭代中,只考虑剩余的权重。 关于加权随机采样,还需要注意以下几点: - 如果权重中有负数,会引发ValueError异常。 - 如果需要采样的数量k大于权重列表的长度,会引发ValueError异常。 - 由于使用了随机数,因此每次运行该函数都可能得到不同的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>