【打卡】2406Datawhale-llm-universe-task6

6.LLM 应用精选案例

chap6.1

核心是针对四种大模型 API 实现了底层封装,基于 Langchain 搭建了可切换模型的检索问答链,并实现 API 以及 Gradio 部署的个人轻量大模型应用。
暂时无法在飞书文档外展示此内容

[图片]

  1. 注意qa这里实例化了ConversationalRetrievalChain,一个新的方法;
  • x相当于被__call__给调用,传入的question/chat_history在那里边进行处理。
  • 举个__call__工作原理的例子,来自学习群内的同学。
class Adder:
  def __init__(self, n):
      self.n = n

  def __call__(self, x):
      return self.n + x
# 创建Adder类的实例
adder = Adder(10)

# 像调用函数一样调用实例
result = adder(5)  # 相当于调用 adder.__call__(5)
print(result)  # 输出: 15
  • 所以可以对“qa”进行参数传入。
qa = ConversationalRetrievalChain.from_llm(
  llm = llm,
  retriever = retriever
)


#print(self.llm)
result = qa({"question": question,"chat_history": self.chat_history})       
#result里有question、chat_history、answer
answer =  result['answer']
self.chat_history.append((question,answer)) #更新历史记录

在这里插入图片描述
欢迎点赞👍和收藏⭐ 这是对我最大的鼓励!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值