本文转载在我的微信公众号:古德曼汽车工业。希望关注本专栏的朋友,也能一并关注微信公众号。
原文地址:工况路普的采集与数据处理
前言与背景
前一段时间【思想】受一位网友委托,对其手中的GSP路谱数据进行动力经济性仿真。该路谱数据来自网友所在的公司,采集的是其出口到某国的轻卡的运行数据。
本期的内容【思想】就来和大家聊下路谱的采集与数据处理工作,这部分内容非常适合商用车的朋友们。商用车与乘用车不同,商用车的运行路线都相对比较固定,无论是客车还是载货车。所以,商用车领域经常会去采集目标客户运行的工况作为分析的样本数据。
路谱采集
这里说的路谱指是车辆在特性地区运行时,车速与时间的关系,请大家不要把它跟疲劳耐久试验的路谱混淆。采集的路谱可以用于动力经济性的仿真,也可以用于底盘测功机,再现实际工况。
图片仅供参考,隐去品牌型号,需要的朋友请自行搜索
谱采集工具是像这样的手持式设备,采集时只需要将放在目标车上的固定位置,就能采集车辆的GPS数据,包含经纬度、海拔,衍生计算得到车速与距离。进行此类路谱数据分析时,由于GPS设备存在一定的误差,一定要结合数据本身与实际的路况特定。
在Google Earth中加载GPX文件,既可得到实际的路况信息。图片下方的图标显示的是车速与海拔的变化关系。【思想】总结以往的经验,得到以下这几种可能导致GPS数据异常的路况。
1、隧道
使用过车载导航设备的人一定会有这样的体会,车子一进入隧道就会失去GPS信号。设备将会切换至惯性导航,容易造成数据失真。
图蓝色的是车辆的实际轨迹,红色的是海拔变化轨迹。由于进入了隧道丢失了GPS信号。只有隧道出口与入口的信息,所以海拔曲线就拟合成山势的变化而非隧道内的海拔。从图下方的海拔变化曲线,就出现了一个及其不寻常的海拔变化。
2、盘山公路
盘山路工况
图中A点与B点在水平精纬度上差别可能并不太大,但是海拔可能变化比较厉害。由于GPS的误差问题,有可能A点就会被认为是B点导致海拔数据失真。
3、桥梁
桥梁工况
桥梁的问题与盘山公路的问题类似,由于GPS误差问题,导致识别出来的位置偏移桥面导致海拔数据是失真。
从数据上分析
GPX格式数据无法通过Google Earth直接读取,需要通过读取工具读取其中的GPS数据。
GPX文件导出工具可以通过公众号回复【路谱工具】获得
在小工具中可以直接看到每个位置的GPS信息,全选可以导出excel格式文件。
导出的数据中,可以根据GPS的位置数据与时间计算得到速度与距离,并且可以计算每一个步长的爬坡度有多少。这里的距离需要结合地球半径进行计算方可得到,公式可以自行百度下,这个容易能找到。
由于GPS数据失真情况的存在,导致如果直接使用导出来的数据做仿真,或者测功机再现工况,必然要出现当前实际车速跟随不上路谱车速的情况。
过计算可以得到一个行驶距离与爬坡度的关系图,如果对道路坡度没有概念的朋友可以去看看《公路工程技术标准》(JTGB01_2014),里面有规定各级公路的最大坡度。曲线中有很多点都超过30%甚至超过了50%,显然是异常数据。根据上面介绍几种导致GSP数据失真的情况分析并修正。
通常也可以在Matlab中设计一套滤波算法并结合实际路况的分析,修正错误的数据。这样得到的爬坡度是不是就美丽很多了呢?对于车速的处理就需要对加速度进行滤波,这里说的加速度包含了加速度与减速度。
档位数据的处理
到目前为止,GPS采集的数据已经基本处理完,也基本能够满足经济性的分析需求。但是如果还需要做到更精确的分析,还需要获得该段数据的实际档位信息。如果是自动变速箱可以直接通过CAN总线获得档位信息,如果是手动档就需要采集发动机转速与动力链参数反算得到档位数据。
对根据公式计算得到的数据还是需要经过处理才可以使用,比如:需要对低车速的数据做滤波、排除空挡滑行等。这些工况的数据都需要过滤。
总结
本期内容,【思想】介绍了路谱的采集与数据处理。文中多次提到使用matlab做滤波,这里用到的滤波包含了:高通、低通、均值、中值、卡尔曼,需要根据自己实际的工程对滤波算法做出调整。如果你还想对本期内容有更深入的了解,可以转发本文到朋友圈后与【思想】共同交流。
推荐阅读