Science重磅:机器学习与岩土工程的重磅结合

近年来,深度学习技术迅猛发展,已在图像识别、自然语言处理、语音识别等众多领域取得了显著成果。与此同时,岩土工程作为传统的工程学科,面临着复杂的地质条件和多变的外部环境,其研究和应用中大量依赖于基于经验和物理模型的数值模拟与实验分析。然而,传统方法往往存在建模复杂、计算成本高以及对大量现场数据依赖性强的问题,难以高效应对岩土工程中的非线性问题与不确定性挑战。

随着大数据技术的发展,深度学习为岩土工程提供了新的工具和解决方案。通过将深度学习应用于岩土工程,可以从海量监测数据中自动提取有用特征,提升对地质材料和地质现象的预测能力。此外,基于物理信息神经网络(PINN)等新兴方法,将数据驱动与物理驱动相结合,不仅提高了预测的精度,也使模型能够更好地适应物理约束条件。这种跨学科的融合在岩土工程问题中的应用,不仅提升了传统方法的效能,也推动了智能化岩土工程的发展。

通过对“深度学习在岩土工程中的应用与实践”的讲解,学员将不仅限于理论分析,而是能够将深度学习技术灵活应用于岩土工程的实际场景中,提升对复杂地质问题的预测和解决能力。学员可以更加有效地处理大规模监测数据、识别关键特征,并通过数据与物理模型的结合,设计出更精准、可靠的工程预测方案。无论是在科研领域还是工程项目中,掌握这些新技术将为学员提供巨大的竞争优势,辅佐他们在智能岩土工程领域取得创新性的成果!
目标:
1.1 理解深度学习的基础原理
1.2 掌握Python编程与深度学习框架
1.3 学习岩土工程数据处理与特征工程
1.4 应用深度学习模型解决岩土工程问题
1.5 探索数据-物理双驱动神经网络
1.6 实战案例与论文复现
1.7 深度学习模型的部署与实施

一、深度学习在岩土工程中的应用与实践

Day1
岩土工程物理模型基础&Python基础
上午
1 岩土工程中的基本物理模型及工程问题
1.1 饱和土与非饱和土渗流模型
1.1. 1 Laplace方程及工程应用
1.1.2 Richards方程及工程应用
1.1.3 渗透系数经验公式及工程应用
1.2 基本物理模型的求解方法
1.2. 1 边界条件讲解
1.2.2 线性方程的解析解法
1.2.3 非线性方程的解析解法
1.2.4 线性与非线性方程的数值解法
1.3 深度学习在岩土工程问题中的应用案例
1.3. 1 分类问题的传统解法和深度学习解法
1.3.2 回归问题的传统解法和深度学习解法
实战演练 :求解渗流方程和固结方程的数值解
下午
2 Python基础
2.1 Python编程基础
2.1. 1 数据结构讲解
2.1.2 逻辑运算讲解
2.2 科学计算库
2.2. 1 Numpy讲解与实操
2.2.2 Scipy讲解与实操
2.3 数据可视化
2. 3 . 1 matplotlib、 seaborn、 pygal讲解 与实 操
2.3.2 三维可视化库pyvista讲解与实操
实战演练 :使用Numpy搭建简单神经网络进行土体量化分层分类
Day2
深度学习基础&神经网络框架
上午
3 深度学习基础
3.1 神经元及激活函数
3.2 前馈神经网络与万能逼近定律
3.3 多种深度神经网络
3.4 自动微分方法
3.5 深度神经网络的损失函数
3.6 最优化方法
实战演练 :构建前馈神经网络进行简单回归任务
下午
4 TensorFlow及 PyTorch框 架 介 绍 与 应 用
4.1 Tensor Flow框架的模型搭建与应用
4.2 PyTorch框架的模型搭建与应用
实战演练 :基于PyTorch构建神经网络模型实现围岩级别智能分类
Day3
岩土工程数据集的获取与预处理&深度学习模型的训练与调优
上午
5 岩土工程数据集的获取与数据预处理
5.1 获取TC304数据库等官方公开数据集
5.2 数据清洗、 特征工程、 数据特征缩放
5.3 利用XGBoost树模型进行特征重要性分析
5.4 利用SPSS Pro进行共线性诊断与显著性分析
实战演练 :获取TC304数据集并进行数据预处理和特征工程
下午
6 深度学习模型的训练与调优
6.1 深度学习模型的训练
6.2 手动调参、 网格搜索调参、 随机搜索调参
6.2 利用贝叶斯优化与蛇优化算法调参
实战演练 :利用上午所得数据集构建深度学习模型并进行调优
Day4
CNN/ RNN/ LSTM的应用&数据-物理双驱动神经网络
上午
7 CNN、 RNN、 LSTM在岩土工程中的应用
7.1 CNN模型的基本结构与图像识别应用
7.2 RNN的时序数据建模基础与应用
7.3 LSTM的时序数据建模基础与应用
实战演练 :使用CNN模型进行岩土数据分类与图像识别
下午
8 数据驱动与物理驱动神经网络
8.1 物理信息神经网络( PINN) 原理及应用
8.2 深度算子网络( DeepONet) 原理及应用
8.3 DeepXDE框架介绍与应用
实战演练 :利用PINN解决岩土工程中的渗透问题
Day5
实战案例与论文复现&学员结课项目展示与讨论
上午
9 实战案例与论文复现
9.1 回归问题 :复现论文中的回归模型
9.1. 1 基于静力触探与机器学习的打入桩竖向承载力预测方法( EI ,讲师)
9.1.2 基于XGBoost的堆场软土渗透系数反演研究(北大核心 , 讲师)
9.2 分类问题 :复现论文中的分类模型
9.2. 1 基于ML-BO-FA模型的静力触探数据解译研究(硕士学位论文 ,讲师)
9.2.2 Probabilistic soil classification and stratification in a vertical cross-section from
limited cone penetration tests using random field and Monte Carlo simulation( Com
puters and Geotechnics ,JCR Q1)
实战演练 :复现研究成果
下午
10 结课项目展示与讨论
10.1 学员展示其结课项目成果
10.2 讨论学员模型的改进与优化方向

二、智能流体力学及其仿真技术应用实战

Day 1

计算流体与机器学习数据驱动方法+基础知识补充 神经网络与数据处理基础
数据驱动基础及其应用

机器学习基础驱动的 CFD 技术
Day 2
物理信息神经网络( PINN)在流体力学中的应用+基础知识理解 物理信息神经网络( PINN)原理与应用
PINN 项目实战与算法剖析
Day 3
智能流体力学与 OpenFOAM 仿真技术相结合

A I 算法融合 OpenFOAM 流体仿真实战【神经网络+LSTM+深度强化学习】
Day 4
ANSYS Fluent 仿真与智能流体力学相结合【交互式仿真+神经网络+LSTM】
Fluent 仿真与框架解析
Fluent 数据仿真融合 A I 算法实战
Day 5
智能流体力学项目实战与深度学习应用【剖析论文+Python 源码实操】
U-Net 模型应用于流体力学
图神经网络(GNN)应用于流体力学
飞行器气动特性预测:CNN 模型在飞行器气动特性预测中的应用
Transformer 模型应用于湍流数据驱动时空学习方法【剖析论文+Python 源码实操】 深度强化学习技术在流体力学领域的应用【剖析论文+Python 源码实操】

三、深度学习固体力学

Day 1
变形与变形梯度:仿射变形假设
应变张量:小变形假设,大变形 (Lagrangian应变)
应力张量:小变形下应力张量,柯西应力,PK1应力,PK2应力
实操案例:分析法计算应变
1-2
控制方程
力平衡方程
角动量平衡方程
线弹性本构关系
强形式与弱形式
实操案例:线弹性问题的软件/代码实现
Python基础以及查询方法
ChatGPT和Github Copilot辅助工具
Day 2:
高等弹性力学与多场耦合
2-1
热力学第一、第二定律
熵与自由能
高分子链随机游走与熵弹性
超弹性问题强形式与弱形式
回看控制方程:热力学视角下的平衡行为和动力学行为
回看控制方程:优化问题视角下的控制方程
实操案例:超弹性问题的软件/代码实现
2-2
热传导方程和扩散方程
牛顿流体类粘弹性问题
粘弹性材料的软件/代码实现
相场法断裂问题
实操案例:线弹性材料相场法断裂裂纹扩展的软件/代码实现
Day 3:
量纲分析和神经网络概述
3-1
学习量纲分析的目的
量纲分析介绍
量纲分析举例:单摆的周期,液滴的振动,液体表面张力测量
3-2
神经网络概述
神经网络应用
介绍神经网络及其应用,常见的神经网络的类型(前馈神经网络、卷积神经网络、循环神经网络等),以及神经网络在固体力学领域的广泛应用。
神经网络的结构
讲述神经网络的基本构建模块及其功能,如神经元、层、激活函数等核心组成部分。
实操案例:神经网络预测阻尼振荡器振子位移 (讲解阻尼振荡器的背景知识(如阻尼振动的基本方程等)、建立物理模型并使用神经网络优化求解动态位移)
Day 4:
PINNs的正逆问题
4-1
PINN内容概述
介绍物理信息神经网络(Physics-Informed Neural Networks,PINN)基本概念,以及作为神经网络新兴方法分支的独特之处。
PINN应用领域
例如,材料载荷、裂纹扩展、热流动力学、流体力学等
PINN方法原理
重点讲解PINN解偏微分方程的方法原理,讲解在解决具有复杂约束的工程问题时如何构建一个能够同时满足真实数据条件、初值条件、偏微分方程结构以及边界条件的多约束损失函数。
4-2
PINN的正问题和逆问题的构建
实操案例:1D, 2D热传导方程的PINNs方法求解
Day 5
论文复现
目标:
根据前期所学习的量纲分析和适定的多物理场仿真问题,建立从0到1构建案例的操作流程
论文 (Flaschel et al., 2021)
Unsupervised discovery of interpretable hyperelastic constitutive laws.
论文 (Manav et al., 2024)
Phase-field modeling of fracture with physics-informed deep learning.
论文 (Marino et al., 2023)
Automated identification of linear viscoelastic constitutive laws with EUCLID

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值