关系型和非关系型的介绍
1.之前用MySQL时需要实现设计各种复杂的表结构(例如 一对一、多对一、多对多等),而使用NoSQL则省去了这个环节,以MongoDB为例 存储数据的方式就像Python中的字典一样,非常方便
2.对于关系型数据库,存储数据的时候需要提前建表建库,随着数据的复杂度越来越高,所建的表的数量也越来越多;但是非关系型却不需要'
NoSQL有哪些常用的数据库
Redis
MemCache(内存型数据库,与redis有些相似,具体自行谷歌、百度查询)
MongoDB
RDBMS 对比 NoSQL
RDBMS:关系数据库管理系统(Relational Database Management System
NoSQL,泛指非关系型的数据库
RDBMS
高度组织化结构化数据
结构化查询语言(SQL)
数据和关系都存储在单独的表中
事务
#NoSQL
代表着不仅仅是SQL
没有声明性查询语言
没有预定义的模式
键 - 值对存储
最终一致性,而非ACID属性
非结构化和不可预知的数据
高性能,高可用性和可伸缩性
Memcached与Redis有什么区别
Redis 和 Memcached 都是基于内存的数据存储系统。Memcached是高性能分布式内存缓存服务,其本质上就是一个内存key-value数据库。Redis是一个开源的key-value存储系统。与Memcached类似,Redis将大部分数据存储在内存中,支持的数据类型包括:字符串、哈希表、链表、集合、有序集合以及基于这些数据类型的相关操作。那么,Memcached与Redis有什么区别呢?让我们一起来看一下。
1、数据操作不同
与Memcached仅支持简单的key-value结构的数据记录不同,Redis支持的数据类型要丰富得多。Memcached基本只支持简单的key-value存储,不支持枚举,不支持持久化和复制等功能。Redis支持服务器端的数据操作相比Memcached来说,拥有更多的数据结构和并支持更丰富的数据操作,支持list、set、sorted set、hash等众多数据结构,还同时提供了持久化和复制等功能。而通常在Memcached里,使用者需要将数据拿到客户端来进行类似的修改再set回去,这大大增加了网络IO的次数和数据体积。在Redis中,这些复杂的操作通常和一般的GET/SET一样高效。所以,如果需要缓存能够支持更复杂的结构和操作, Redis会是更好的选择。
2、内存管理机制不同
在Redis中,并不是所有的数据都一直存储在内存中的。这是和Memcached相比一个最大的区别。当物理内存用完时,Redis可以将一些很久没用到的value交换到磁盘。Redis只会缓存所有的key的信息,如果Redis发现内存的使用量超过了某一个阀值,将触发swap的操作,Redis根据“swappability = age*log(size_in_memory)”计算出哪些key对应的value需要swap到磁盘。然后再将这些key对应的value持久化到磁盘中,同时在内存中清除。这种特性使得Redis可以保持超过其机器本身内存大小的数据。
而Memcached默认使用Slab Allocation机制管理内存,其主要思想是按照预先规定的大小,将分配的内存分割成特定长度的块以存储相应长度的key-value数据记录,以完全解决内存碎片问题。
从内存利用率来讲,使用简单的key-value存储的话,Memcached的内存利用率更高。而如果Redis采用hash结构来做key-value存储,由于其组合式的压缩,其内存利用率会高于Memcached。
3、性能不同
由于Redis只使用单核,而Memcached可以使用多核,所以平均每一个核上Redis在存储小数据时比Memcached性能更高。而在100k以上的数据中,Memcached性能要高于Redis,虽然Redis也在存储大数据的性能上进行了优化,但是比起Memcached,还是稍有逊色。
4、集群管理不同
Memcached是全内存的数据缓冲系统,Redis虽然支持数据的持久化,但是全内存毕竟才是其高性能的本质。作为基于内存的存储系统来说,机器物理内存的大小就是系统能够容纳的最大数据量。如果需要处理的数据量超过了单台机器的物理内存大小,就需要构建分布式集群来扩展存储能力。
Memcached本身并不支持分布式,因此只能在客户端通过像一致性哈希这样的分布式算法来实现Memcached的分布式存储。相较于Memcached只能采用客户端实现分布式存储,Redis更偏向于在服务器端构建分布式存储。
小结:Redis和Memcached哪个更好?
Redis更多场景是作为Memcached的替代者来使用,当需要除key-value之外的更多数据类型支持或存储的数据不能被剔除时,使用Redis更合适。如果只做缓存的话,Memcached已经足够应付绝大部分的需求,Redis 的出现只是提供了一个更加好的选择。总的来说,根据使用者自身的需求去选择才是最合适的。
MongoDB的介绍
MongoDB 是由C++语言编写的,是一个基于分布式文件存储的开源数据库系统。
在高负载的情况下,添加更多的节点,可以保证服务器性能。
MongoDB 旨在为WEB应用提供可扩展的高性能数据存储解决方案。
MongoDB 将数据存储为一个文档,数据结构由键值(key=>value)对组成。
MongoDB 文档类似于 JSON 对象。字段值可以包含其他文档,数组及文档数组
MongoDB的优势
1.易扩展: NoSQL数据库种类繁多, 但是⼀个共同的特点都是去掉关系数据库的关系型特性。 数据之间⽆关系, 这样就⾮常容易扩展
2.⼤数据量, ⾼性能: NoSQL数据库都具有⾮常⾼的读写性能, 尤其在⼤数据量下, 同样表现优秀。 这得益于它的⽆关系性, 数据库的结构简单
3.灵活的数据模型: NoSQL⽆需事先为要存储的数据建⽴字段, 随时可以存储⾃定义的数据格式。 ⽽在关系数据库⾥, 增删字段是⼀件⾮常麻烦的事情。 如果是⾮常⼤数据量的表, 增加字段简直就是⼀个噩梦
MongoDB的安装
sudo apt-get install -y mongodb
MongoDB的启动
1.服务端的启动
查看mongodb是什么样的状态:ps -aux|grep mongodb
启动: sudo service mongodb start
停止: sudo service mongodb stop
重启: sudo service mongodb restart
配置文件的位置:/etc/mongodb.conf
日志的位置:/var/log/mongodb/mongod.log
默认端⼝:27017
查看未注释的内容:grep -v "#" mongodb.conf
查看注释的内容:grep v "#" mongodb.conf
2. 客户端的启动
启动本地客户端:mongo
查看帮助:mongo –help
退出:exit或者ctrl+c
Mongodb的权限管理
1 为什么要进行权限管理的设置
刚安装完毕的mongodb默认不使用权限认证方式启动,与MySQL不同,mongodb在安装的时候并没有设置权限,然而公网运行系统需要设置权限以保证数据安全,所以我们要学习mongodb的权限管理
2 mongodb的权限管理方案
MongoDB是没有默认管理员账号,所以要先添加管理员账号,并且mongodb服务器需要在运行的时候 开启验证模式
用户只能在用户所在数据库登录(创建用户的数据库),包括管理员账号。
管理员可以管理所有数据库,但是不能直接管理其他数据库,要先认证后才可以。
3 mongodb超级管理员账号的创建
1)以权限认证的方式启动mongodb数据库
sudo mongod -auth
启动之后在启动信息中会有如下信息,说明mongodb以权限认证的方式启动成功
[initandlisten] options: { security: { authorization: "enabled" } }
2)创建超级用户 使用admin数据库(超级管理员 数据库上)
use admin
创建超级用户
db.createUser({"user":"python","pwd":"python","roles":["root"]})
创建成功会显示如下信息
Successfully added user: { "user" : "python", "roles" : [ "root" ] }
、
3) 退出客户端再次登录验证 此时再使用数据库各命令的时候会报权限错误,需要认证才能执行相应操作
use admin
db.auth('python','python')
1
python用户是创建在admin数据库上的所以必须来到admin数据库上进行认证,认证成功会返回1,失败返回0
4创建普通用户
1)选择需要创建用户的数据库
use test1
2)在使用的数据库上创建普通用户
db.createUser("user":"user1", "pwd":"pwd1", roles:["read"])
创建普通用户user1,该用户在test1上的权限是只读
db.createUser("user":"user1", "pwd":"pwd1", roles:["readWrite"])
创建普通用户user1,该用户在test1上的权限是读写
3)在其他数据库上创建普通用户
use admin
db.createUser({"user":"python1", "pwd":"python1", roles:[{"role":"read","db":"dbname1"},{"role":"readWrite","db":"dbname2"}
]})
在admin上创建python1用户,python1用户的权限有两个,一个再dbname1上的只读,另一个是在dbname2上的读写
5 查看创建的用户
show users
{
"_id" : "admin.python",
"user" : "python",
"db" : "admin",
"roles" : [
{
"role" : "root",
"db" : "admin"
}
]
}
6 删除用户
db.dropUser('python')
理解MongoDB中的一些概念
之前学习MySQL时,我们知道有
数据库
数据表
记录
字段
学习MongoDB时,有些变化
数据库
集合(对应MySQL中的数据表)
文档(对应MySQL中的记录)
域(对应MySQL中的字段)
MongoDB数据库相关命令
1.查看所有的数据库
show dbs 或者show databases
2. 查看当前正在使用的数据库
db
注意:没有切换数据库的情况下默认使用test数据库
3. 切换数据库
use 数据库名字
4.创建数据库
use 数据库名字
注意:
如果数据库不存在,则创建数据库,否则切换到指定数据库
刚创建的数据库并不在数据库的列表中,如 要显示它,需要向数据库中插入一些数据,才会看到刚刚创建的数据库(即如果创建了数据库没有数据,show dbs看不到)
MongoDB 中默认的数据库为 test,如果你没有创建新的数据库,集合将存放在 test 数据库中
#5. 删除当前的数据库
db.dropDatabase()
MongoDB集合相关命令
1)查看当前数据库中所有的集合:
show collections
2)创建集合
2.1 自动创建集合:
向不存在的集合中第1次加⼊数据时, 集合会被创建出来
2.2 手动创建集合:
db.createCollection(name,options)
demo:db.createCollection("stu")
demo2:db.createCollection("sub", { capped : true, size : 10 } )
说明:
参数capped: 默认值为false表示不设置上限,值为true表示设置上限
参数size: 当capped值为true时, 需要指定此参数, 表示上限⼤⼩,当⽂档达到上限时, 会将之前的数据覆盖, 单位为字节
检查集合是否有上限: db.集合名.isCapped()
3)删除集合:
db.集合名称.drop()
4)查看集合中的数据
db.集合名.find()
demo:
db.tea.find()
5)db.集合名.insert({name:"",age:"",…})
db.tea.insert({name:"wp2",age:28})
MongoDB中常见的数据类型
常见类型
Object ID: ⽂档ID
String: 字符串, 最常⽤, 必须是有效的UTF-8
Boolean: 存储⼀个布尔值, true或false
Integer: 整数可以是32位或64位, 这取决于服务器
Double: 存储浮点值
Arrays: 数组或列表, 多个值存储到⼀个键
Object: ⽤于嵌⼊式的⽂档, 即⼀个值为⼀个⽂档
Null: 存储Null值
Timestamp: 时间戳, 表示从1970-1-1到现在的总秒数
Date: 存储当前⽇期或时间的UNIX时间格式
#注意点
每个⽂档都有⼀个属性, 为_id, 保证每个⽂档的唯⼀性,mongodb默认使用_id作为主键
可以⾃⼰去设置_id插⼊⽂档,如果没有提供, 那么MongoDB为每个⽂档提供了⼀个独特的_id, 类型为objectID
objectID是⼀个12字节的⼗六进制数,每个字节两位,一共是24 位的字符串: 前4个字节为当前时间戳 接下来3个字节的机器ID 接下来的2个字节中MongoDB的服务进程id 最后3个字节是简单的增量值
MongoDB的增删改查
文档的数据结构和 JSON 基本一样。
所有存储在集合中的数据都是 BSON 格式。BSON 是一种类似 JSON 的二进制形式的存储格式,是 Binary JSON 的简称。
1. MongoDB的插入
1)insert()方式
MongoDB 使用insert()或 save()方法向集合中插入文档,语法如下:
db.集合名称.insert(document)
demo:
db.stu.insert({name:'gj',gender:1})
db.stu.insert({_id:"20170101",name:'gj',gender:1})
插⼊⽂档时, 如果不指定_id参数, MongoDB会为⽂档分配⼀个唯⼀的ObjectId
2)save()方式
命令:
db.集合名称.save(document)
如果⽂档的_id已经存在则修改, 如果⽂档的_id不存在则添加
2.MongoDB的简单查询
命令:
db.集合名称.find()
如果需要以易读的方式来读取数据,可以使用 pretty()方法,语法格式如下:
db.集合名称.find().pretty()
3.MongoDB的更新
命令:
db.集合名称.update(<query> ,<update>,{multi: <boolean>})
参数query:查询条件
参数update:更新操作符
参数multi:可选, 默认是false,表示只更新找到的第⼀条记录, 值为true表示把满⾜条件的⽂档全部更新
demo:查询到的第1条用新的文档进行覆盖
db.stu.update({name:'hr'},{name:'mnc'})
demo:指定键值更新操作
db.stu.update({name:'hr'},{$set:{name:'hys'}})
demo:更新全部
db.stu.update({},{$set:{gender:0}},{multi:true})
4.MongoDB的删除
命令:
db.集合名称.remove(<query>,{justOne: <boolean>})
说明:
参数query:可选,删除的⽂档的条件
参数justOne:可选, 如果设为true或1, 则只删除⼀条, 默认false, 表示删除多条
查询进阶
1. 数据查询
⽅法find(): 查询
db.集合名称.find({条件⽂档})
⽅法findOne():查询,只返回第⼀个
db.集合名称.findOne({条件⽂档})
⽅法pretty(): 将结果格式化
db.集合名称.find({条件⽂档}).pretty()
2.插入多个数据insertMany
db.stu.insertMany([{"name" : "郭靖", "hometown" : "蒙古", "age" : 20, "gender" : true },{"name" : "⻩蓉", "hometown" : "桃花岛", "age" : 18, "gender" : false },{"name" : "华筝", "hometown" : "蒙古", "age" : 18, "gender" : false },{"name" : "⻩药师", "hometown" : "桃花岛", "age" : 40, "gender" : true },{"name" : "段誉", "hometown" : "⼤理", "age" : 16, "gender" : true },{"name" : "段王爷", "hometown" : "⼤理", "age" : 45, "gender" : true },{"name" : "洪七公", "hometown" : "华⼭", "age" : 18, "gender" : true }])
3.比较运算符
等于: 默认是等于判断, 没有运算符
⼩于:$lt (less than)
⼩于等于:$lte (less than equal)
⼤于:$gt (greater than)
⼤于等于:$gte
不等于:$ne
查询年龄大于或者等于18的所有学生
db.stu.find({age:{$gte:18}})
4.逻辑运算符
逻辑运算符主要指与、或逻辑
and:在json中写多个条件即可
查询年龄⼤于或等于18, 并且性别为true的学⽣
db.stu.find({age:{$gte:18},gender:true})
or:使⽤$or, 值为数组, 数组中每个元素为json
db.stu.find({$or:[{age:{$gt:18}},{gender:false}]})
查询年龄⼤于18或性别为男⽣, 并且姓名是郭靖
db.stu.find({$or:[{age:{$gt:18}},{gender:true}], name:"郭靖"}).pretty()
5.范围运算符
查询年龄为18、 28的学⽣
db.stu.find({age:{$in:[18,28]}})
使⽤$in, $nin 判断数据是否在某个数组内
查询年龄为18、 28的学⽣
db.stu.find({age:{$in:[18,28]}})
6.⽀持正则表达式
使⽤//或$regex编写正则表达式
查询以“段”开始的姓名
方式1:
db.Test.find({name:/^段/}).pretty()
方式2:
db.Test.find({name:{$regex:"^段"}}).pretty()
运行结果
{
"_id" : ObjectId("5d22b9f846f899bfae92453d"),
"name" : "段誉",
"hometown" : "⼤理",
"age" : 16,
"gender" : true
}
{
"_id" : ObjectId("5d22b9f846f899bfae92453e"),
"name" : "段王爷",
"hometown" : "⼤理",
"age" : 45,
"gender" : true
}
7.自定义查询*
由于mongo的shell是一个js的执行环境 使⽤$where后⾯写⼀个函数, 返回满⾜条件的数据
查询年龄⼤于30的学⽣
db.stu.find({
$where:function() {
#this指向集合stu中的每一个元素
return this.age>30;
}
})
demo:
db.stu.find({
$where:function(){
return this.age*10>200||this.gender == false}
})
进阶用法
高级用法
1.limit
limit(): ⽤于读取指定数量的⽂档
用法:
db.集合名称.find().limit(NUMBER)
查询2条学⽣信息:
db.stu.find().limit(2)
2.skip
skip:⽤于跳过指定数量的⽂档
用法:
db.集合名称.find().skip(NUMBER)
跳过前2个,从第3个开始查询:
db.stu.find().skip(2)
3. 同时使用limit和skip
db.stu.find().limit(4).skip(5)
或
db.stu.find().skip(5).limit(4)
**注意:先使用skip在使用limit的效率要高于前者**
4.投影
在查询到的返回结果中, 只选择必要的字段
命令:
db.集合名称.find({},{field:1,...})
说明:
参数为字段和值, 值为1表示显示, 值为0不显
**特别注意: 对于_id列默认是显示的, 如果不显示需要明确设置为0**
demo:
db.stu.find({},{_id:0,name:1,gender:1})
5.排序
⽅法sort(), ⽤于对结果集进⾏排序
命令:
db.集合名称.find().sort({字段:1,...})
说明:
参数1为升序排列 参数-1为降序排列
demo:根据性别降序, 再根据年龄升序
db.stu.find().sort({gender:-1,age:1})
6.统计个数
⽅法count()⽤于统计结果集中⽂档条数
命令方式1:
db.集合名称.find({条件}).count()
命令方式2:
db.集合名称.count({条件})
demo:
db.stu.find({gender:true}).count()
db.stu.count({age:{$gt:20},gender:true})
7.消除重复
⽅法distinct()对数据进⾏去重
命令:
db.集合名称.distinct('去重字段',{条件})
demo:年龄大于18岁的所有不重复的hometown
db.stu.distinct('hometown',{age:{$gt:18}})
聚合操作
1.MongoDB的聚合是什么
聚合(aggregate)是基于数据处理的聚合管道,每个文档通过一个由多个阶段(stage)组成的管道,可以对每个阶段的管道进行分组、过滤等功能,然后经过一系列的处理,输出相应的结果。
语法:
db.集合名称.aggregate({管道:{表达式}})
2.常用管道和表达式
2.1 常用管道命令
在MongoDB中,⽂档处理完毕后, 通过管道进⾏下⼀次处理 常用管道命令如下:
$group: 将集合中的⽂档分组, 可⽤于统计结果
$match: 过滤数据, 只输出符合条件的⽂档
$project: 修改输⼊⽂档的结构, 如重命名、 增加、 删除字段、 创建计算结果
$sort: 将输⼊⽂档排序后输出
$limit: 限制聚合管道返回的⽂档数
$skip: 跳过指定数量的⽂档, 并返回余下的⽂档
2.2 常用表达式
语法:表达式:'$列名' 常⽤表达式:
$sum: 计算总和, $sum:1 表示以1倍计数
$avg: 计算平均值
$min: 获取最⼩值
$max: 获取最⼤值
$push: 在结果⽂档中插⼊值到⼀个数组中
#3 管道命令之$group
3 管道命令之$group
#3.1 按照某个字段进行分组
$group是所有聚合命令中用的最多的一个命令,用来将集合中的文档分组,可用于统计结果
使用示例如下
db.stu.aggregate(
{$group:
{
_id:"$gender",
count:{$sum:1}
}
}
)
其中注意点:
db.db_name.aggregate是语法,所有的管道命令都需要写在其中
_id 表示分组的依据,按照哪个字段进行分组,需要使用$gender表示选择这个字段进行分组
$sum:1 表示把每条数据作为1进行统计,统计的是该分组下面数据的条数
3.2 group by null
当我们需要统计整个文档的时候,$group 的另一种用途就是把整个文档分为一组进行统计
使用实例如下:
db.stu.aggregate(
{$group:
{
_id:null,
counter:{$sum:1}
}
}
)
其中注意点:
_id:null 表示不指定分组的字段,即统计整个文档,此时获取的counter表示整个文档的个数
3.3 数据透视
正常情况在统计的不同性别的数据的时候,需要知道所有的name,需要逐条观察,如果通过某种方式把所有的name放到一起,那么此时就可以理解为数据透视
使用示例如下:
1)统计不同性别的学生
db.stu.aggregate(
{$group:
{
_id:null,
name:{$push:"$name"}
}
}
)
2)使用$$ROOT可以将整个文档放入数组中
db.stu.aggregate(
{$group:
{
_id:null,
name:{$push:"$$ROOT"}
}
}
)
4 管道命令之$match
$match用于进行数据的过滤,是在能够在聚合操作中使用的命令,和find区别在于$match 操作可以把结果交给下一个管道处理,而find不行
使用示例如下:
查询年龄大于20的学生
db.stu.aggregate(
{$match:{age:{$gt:20}}
)
查询年龄大于20的男女学生的人数
db.stu.aggregate(
{$match:{age:{$gt:20}}
{$group:{_id:"$gender",counter:{$sum:1}}}
)
5 管道命令之$project
$project用于修改文档的输入输出结构,例如重命名,增加,删除字段
使用示例如下:
查询学生的年龄、姓名,仅输出年龄姓名
db.stu.aggregate(
{$project:{_id:0,name:1,age:1}}
)
查询男女生的人数
db.stu.aggregate(
{$group:{_id:"$gender",counter:{$sum:1}}}
{$project:{_id:0,counter:1}}
)
6 管道命令之$sort
$sort用于将输入的文档排序后输出
使用示例如下:
1)查询学生信息,按照年龄升序
db.stu.aggregate({$sort:{age:1}})
2)查询男女人数,按照人数降序
db.stu.aggregate(
{$group:{_id:"$gender",counter:{$sum:1}}},
{$sort:{counter:-1}}
)
7 管道命令之$skip 和 $limit
$limit限制返回数据的条数
$skip 跳过指定的文档数,并返回剩下的文档数
同时使用时先使用skip在使用limit
使用示例如下:
1)查询2条学生信息
db.stu.aggregate(
{$limit:2}
)
2)查询从第3条开始的学生信息
db.stu.aggregate(
{$skip:2}
)
3)统计男女生人数,按照人数升序,返回第二条数据
db.stu.aggregate(
{$group:{_id:"$gender",counter:{$sum:1}}},
{$sort:{counter:1}},
{$skip:1},
{$limit:1}
)
索引
1.为什么要在MongoDB中创建索引
当数据库中有大量的数据时,为了加快查询速度,我们需要创建索引
2. 创建索引的方法
语法:
db.集合.ensureIndex({属性:1}),1表示升序, -1表示降序
db.集合.createIndex({属性:1})
上面两个命令效果等价
具体操作:
db.db_name.createIndex({name:1})
3. 索引的查看
默认情况下_id是集合的索引
查看方式:db.collection_name.getIndexes()
4.删除索引
语法:db.t1.dropIndex({'索引名称':1})
举例:b.test2000.dropIndex({age:1})
5.MongoDB创建唯一索引
在默认情况下MongoDB的索引域的值是可以相同的,创建唯一索引之后,数据库会在插入数据的时候检查创建索引域的值是否存在,如果存在则不会插入该条数据,但是创建索引仅仅能够提高查询速度,同时降低数据库的插入速度。
db.collection_name.ensureIndex({"name":1},{"unique":true})
db.test2000.createIndex({age:1},{unique:true})
6. 建立复合索引
抓全贴吧信息时,如果把帖子的名字作为唯一索引对数据进行去重是不可取的,因为可能有很多帖子名字相同。
此时可能用多个域来保证数据的唯一性,这个时候可以考虑建立复合索引来实现。
建立复合索引的语法:
db.collection_name.ensureIndex({字段1:1,字段2:1})
举例:
db.test2000.createIndex({name:1,age:1})
7.建立索引注意点
根据需要选择是否需要建立唯一索引
数据量巨大并且数据库的读出操作非常频繁的时候才需要创建索引,如果写入操作非常频繁,创建索 引会影响写入速度
索引字段是升序还是降序在单个索引的情况下不影响查询效率,但是在复合索引的条件下会有影响
在进行查询的时候如果字段1需要升序的方式排序输出,字段2需要降序的方式排序输出,那么此时复合索引的建立需要把字段1设置为1,字段2设置为-1
MongoDB的备份恢复与导出导入
以下命令是在终端中输入,而不是在mongo客户端中输入
1.备份
保证数据库安全,主要用于灾难处理
备份的语法:mongodump -h dbhost -d dbname -o dbdirectory、
-h: 服务器地址, 也可以指定端⼝号
-d: 需要备份的数据库名称
-o: 备份的数据存放位置, 此⽬录中存放着备份出来的数据
例:mongodump -h 192.168.196.128:27017 -d test1 -o ~/Desktop/test1bak
2 恢复
恢复语法:mongorestore -h dbhost -d dbname --dir dbdirectory
-h: 服务器地址
-d: 需要恢复的数据库实例
--dir: 备份数据所在位置
示例:mongorestore -h 192.168.196.128:27017 -d test2 --dir ~/Desktop/test1bak/test1
MongoDB和Python交互
1.pymongo 提供了MongoDB和python交互的所有方法
安装方式:
pip install pymongo
MongoDB和Python交互的模块
pymongo 提供了MongoDB和python交互的所有方法
2.使用pymongo
2.1 导入pymongo并选择要操作的集合
数据库和集合如果没有会自动创建
from pymongo import MongoClient
client = MongoClient(host,port)
collection = client[db名][集合名]
2.2 添加数据
insert可以批量的插入数据列表,也可以插入一条数据
#插入一条数据
collection.insert({"name": "test10010", "age": 33})
#插入多条数据
collection.insert([{"name": "test10010", "age": 33}, {"name": "test10011", "age": 34}])
2.3 添加一条数据
#插入一条数据
ret = collection.insert_one({"name": "test10010", "age": 33})
print(ret)
2.4. 添加多条数据
#插入多条数据
item_list = [{"name": "test1000%d" % i} for i in range(10)]
#insert_many接收一个列表,列表中为所有需要插入的字典
t = collection.insert_many(item_list)
2.5 查找一条数据
# find_one查找并且返回一个结果,接收一个字典形式的条件
t = collection.find_one({"name": "test10005"})
print(t)
print(type(t))
2.6 查找全部数据
结果是一个Cursor游标对象,是一个可迭代对象,可以类似读文件的指针
#根据查询条件返回所有满足条件的结果
#t = collection.find({"name": "test10005"})
#find返回所有满足条件的结果,如果条件为空,则返回数据库的所有
t = collection.find()
#结果是一个Cursor游标对象,是一个可迭代对象,可以类似读文件的指针,
for i in t:
print(i)
print("-" * 30)
for i in t: # 此时t中没有内容
print(i)
2.7 更新一条数据
注意使用$set命令
# update_one更新一条数据
collection.update_one({"name": "test10005"}, {"$set": {"name": "new_test10005"}})
2.8 更新全部数据
# update_one更新全部数据
collection.update_many({"name": "test10005"}, {"$set": {"name": "new_test10005"}})
2.9 删除一条数据
#delete_one删除一条数据
collection.delete_one({"name": "test10010"})
2.10 删除全部数据
# delete_may删除所有满足条件的数据
collection.delete_many({"name": "test10010"})