目录
【前提】from matplotlib import pyplot as plt
1. 绘制散点图
方法与绘制折线图类似,只是需要调用 plt.scatter()
#绘制散点图,数据为2016年北京市3、10月份每日白天的最高气温
from matplotlib import pyplot as plt
from matplotlib import font_manager
my_font = font_manager.FontProperties(fname="C:\WINDOWS\FONTS\MSYH.TTC")
y_3 = [11,17,16,11,12,11,12,6,6,7,8,9,12,15,14,17,18,21,16,17,20,14,15,15,15,19,21,22,22,22,23]
y_10 = [26,26,28,19,21,17,16,19,18,20,20,19,22,23,17,20,21,20,22,15,11,15,5,13,17,10,11,13,12,13,6]
#错开3月、10月的x轴坐标
x_3 = range(1,32)
x_10 = range(41,72)
plt.figure(figsize=(20,8),dpi=80)
#使用scatter方法绘制散点图
plt.scatter(x_3,y_3,label="3月")
plt.scatter(x_10,y_10,label="10月")
_x = list(x_3) + list(x_10)
_xtick_labels = ["3月{}日".format(i) for i in x_3]
_xtick_labels += ["10月{}日".format(i-40) for i in x_10]
plt.xticks(_x[::3],_xtick_labels[::3],fontproperties=my_font,rotation=45)
plt.legend(prop=my_font,loc=2)
plt.xlabel("日期",fontproperties=my_font)
plt.ylabel("温度(℃)",fontproperties=my_font)
plt.title("2016年北京市3、10月份每日白天最高气温",fontproperties=my_font)
plt.show()
2. 绘制条形图
2.1 基础:调用 plt.bar()
如:plt.bar(x,y,width=0.2,color="orange")
首个参数只能接受含数字的可迭代对象;
width:表示长条的宽度,默认值为0.8。
#绘制条形图,数据为2017年内地电影票房前20的电影及其票房数据
from matplotlib import pyplot as plt
from matplotlib import font_manager
my_font = font_manager.FontProperties(fname="C:\WINDOWS\FONTS\MSYH.TTC")
x = ["战狼2","速度与激情8","功夫瑜伽","西游伏妖篇","变形金刚5:最后的骑士","摔跤吧!爸爸","加勒比海盗5:死无对证","金刚:骷髅岛","极限特工:终极回归","生化危机6:终章","乘风破浪","神偷奶爸3","智取威虎山","大闹天竺","金刚狼3:殊死一战","蜘蛛侠:英雄归来","悟空传","银河护卫队2","情圣","新木乃伊",]
y = [56.01,26.94,17.53,16.49,15.45,12.96,11.8,11.61,11.28,11.12,10.49,10.3,8.75,7.55,7.32,6.99,6.88,6.86,6.58,6.23]
plt.figure(figsize=(20,15),dpi=80)
plt.bar(range(len(x)),y,width=0.3)
plt.xticks(range(len(x)),x,fontproperties=my_font,rotation=90)
plt.show()
2.2 绘制横状条形图
调用 plt.barh()
如:plt.barh(x,y,height=0.3,color="orange")
参数不再为 width,而是 height。
#绘制横着的条形图,数据同上
from matplotlib import pyplot as plt
from matplotlib import font_manager
my_font = font_manager.FontProperties(fname="C:\WINDOWS\FONTS\MSYH.TTC")
x = ["战狼2","速度与激情8","功夫瑜伽","西游伏妖篇","变形金刚5:最后的骑士","摔跤吧!爸爸","加勒比海盗5:死无对证","金刚:骷髅岛","极限特工:终极回归","生化危机6:终章","乘风破浪","神偷奶爸3","智取威虎山","大闹天竺","金刚狼3:殊死一战","蜘蛛侠:英雄归来","悟空传","银河护卫队2","情圣","新木乃伊",]
y = [56.01,26.94,17.53,16.49,15.45,12.96,11.8,11.61,11.28,11.12,10.49,10.3,8.75,7.55,7.32,6.99,6.88,6.86,6.58,6.23]
plt.figure(figsize=(20,8),dpi=80)
plt.barh(range(len(x)),y,height=0.3,color="orange")
plt.yticks(range(len(x)),x,fontproperties=my_font)
plt.grid(alpha=0.4)
plt.show()
2.3 绘制多个条形图
即多次调用 plt.bar()
【注】绘制同组数据的各个条形图时,要适当移动x轴的坐标,保证图形不重叠,如:
bar_width = 0.2
x_14 = list(range(len(a)))
x_15 = [i+bar_width for i in x_14]
x_16 = [i+bar_width for i in x_15]
plt.bar(x_14,b_14,width=bar_width,label="9月14日")
plt.bar(x_15,b_15,width=bar_width,label="9月15日")
plt.bar(x_16,b_16,width=bar_width,label="9月16日")
#绘制多个条形图,数据为三部电影在2017年9月14、15、16日的票房数据
from matplotlib import pyplot as plt
from matplotlib import font_manager
my_font = font_manager.FontProperties(fname="C:\WINDOWS\FONTS\MSYH.TTC")
a = ["猩球崛起3:终极之战","敦刻尔克","蜘蛛侠:英雄归来","战狼2"]
b_16 = [15746,312,4497,319]
b_15 = [12357,156,2045,168]
b_14 = [2358,399,2358,362]
plt.figure(figsize=(20,15),dpi=80)
#根据条形图的宽度设置x轴的移动距离
bar_width = 0.2
x_14 = list(range(len(a)))
x_15 = [i+bar_width for i in x_14]
x_16 = [i+bar_width for i in x_15]
plt.bar(x_14,b_14,width=bar_width,label="9月14日")
plt.bar(x_15,b_15,width=bar_width,label="9月15日")
plt.bar(x_16,b_16,width=bar_width,label="9月16日")
plt.xticks(x_15,a,fontproperties=my_font)
plt.legend(prop=my_font)
plt.xlabel("日期",fontproperties=my_font)
plt.ylabel("票房(亿元)",fontproperties=my_font)
plt.title("2017年9月14、15、16日票房",fontproperties=my_font)
plt.show()
3. 绘制直方图
3.1 plt.hist()
1)传入两个基本参数,即需要统计的原始数据,以及组数;
2)若组距不均匀时,可以不传入固定的组数,而改为一个列表,长度为组数,值为分组依据;
3)参数 normed = True (可选) 表示绘制频率直方图,不写时默认为频数直方图。
#绘制直方图,250部电影的时长,希望统计出这些电影时长的分布状态
from matplotlib import pyplot as plt
from matplotlib import font_manager
my_font = font_manager.FontProperties(fname="C:\WINDOWS\FONTS\MSYH.TTC")
a = [131, 98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, \
124, 101, 110, 116, 117, 110, 128, 128, 115, 99, 136, 126, 134, 95, 138, 117, 111,78, 132, 124, 113, 150, \
110, 117, 86, 95, 144, 105, 126, 130,126, 130, 126, 116, 123, 106, 112, 138, 123, 86, 101, 99, 136,123, 117, \
119, 105, 137, 123, 128, 125, 104, 109, 134, 125, 127,105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, \
120, 114,105, 115, 132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134,156, 106, 117, 127, 144, 139, 139, 119, \
140, 83, 110, 102,123,107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109, 119, 133,112, 114, 122, 109, 106,\
123, 116, 131, 127, 115, 118, 112, 135,115, 146, 137, 116, 103, 144, 83, 123, 111, 110, 111, 100, 154,136, 100, \
118, 119, 133, 134, 106, 129, 126, 110, 111, 109, 141,120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125,\
126,114, 140, 103, 130, 141, 117, 106, 114, 121, 114, 133, 137, 92,121, 112, 146, 97, 137, 105, 98, 117, 112,\
81, 97, 139, 113,134, 106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110,105, 129, 137, 112, 120, 113, \
133, 112, 83, 94, 146, 133, 101,131, 116, 111, 84, 137, 115, 122, 106, 144, 109, 123, 116, 111,111, 133, 150]
plt.figure(figsize=(20,8),dpi=80)
#计算组数 num_bins
bin_width = 3 #设置组距
num_bins = (max(a)-min(a))//bin_width
#normed=bool:是否绘制频率直方图
plt.hist(a,num_bins,normed=True)
plt.xticks(list(range(min(a),max(a)+bin_width,bin_width)))
plt.grid(alpha=0.4)
plt.show()
3.2 利用条形图绘制直方图
【注】一般而言,能够使用 plt.hist() 方法的的是那些没有经过统计的原始数据。若给出的数据已经统计过,为达到直方图的效果,可以考虑绘制条形图。
#通过绘制条形图的方法绘制直方图,数据为2004年美国人从家到上班地点所需要的时间。
from matplotlib import pyplot as plt
from matplotlib import font_manager
my_font = font_manager.FontProperties(fname="C:\WINDOWS\FONTS\MSYH.TTC")
plt.figure(figsize=(20,8),dpi=80)
interval = [0,5,10,15,20,25,30,35,40,45,60,90]
width = [5,5,5,5,5,5,5,5,5,15,30,60]
quantity = [836,2737,3723,3926,3596,1438,3273,642,824,613,215,47]
#width=1使得条形图之间没有间隙
plt.bar(range(len(quantity)),quantity,width=1)
#调整x轴的刻度
_x = [i-0.5 for i in range(len(quantity)+1)]
_xtick_labels = interval + [150]
plt.xticks(_x,_xtick_labels)
plt.grid(alpha=0.4)
plt.show()