掘金量化实盘开发分享

闲话不说,直接干货

掘金量化架构中,有定时策略和事件策略两种,定时策略便于新股申购,逆回购操作。事件策略便于股票交易。

定时策略很简单:

在初始化函数里,启动一个定时任务,在任务函数里完成要完成任务即可。

继续干货,逆回购定制任务案例,代码如下:

def init(context):
# 逆回购定时时间
context.brr_time = '14:57:00'
# 逆回购目标债券(沪市1天期逆回购代码为204001,深市1天期逆回购代码为131810,沪市和深市均为1000起,10张为1手,每张100元,一般沪市相对深市利率高一些)
context.symbol = 'SHSE.204001'
# 逆回购最低利率(低于该利率不进行逆回购,可开启券商的余额理财产品,2023年10月的某券商余额理财年化约为2.3%)
context.min_rate = 1.5
def algo_1(context):
    current_data = current(symbols=context.symbol)[0]
    if current_data['price'] < context.min_rate:
        print('{}:当前逆回购价格低于{},不进行逆回购,建议开启余额理财产品'.format(context.now, context.min_rate))
    else:
        trade_price = current_data['price']  # 当前价格,也可以使用买五价格作为交易价格:current_data['quotes'][4]['bid_p']
        account_cash = get_cash()
        volume = int(np.floor(account_cash['available'] / 1000) * 10)
        if volume > 0:
            bond_reverse_repurchase_agreement(symbol=context.symbol, volume=volume, price=trade_price,
                                              order_type=OrderType_Limit)
            print('{}:进行逆回购,卖出市值:{},当前价格:{}'.format(context.now, volume * 100, current_data['price']))
        else:
            print('{}:金额不足,未进行逆回购'.format(context.now))

这个逆回购助手很是方便,剩余资金自动买入逆回购了。

掘金事件策略有很多种类,最细的就是tick事件了,每三秒发布一次,同样在初始化函数里定义一个触发事件。

代码如下:

# 订阅行情
subscribe(symbols = context.orders , frequency='tick', count=10,
          fields='symbol,open,high,low,price,cum_volume,cum_amount,last_volume,last_amount,created_at,quotes')

这里面要注意的是,掘金是一旦接到tick包,就会触发事件,每有一条tick数据产生,就会调用on_tick函数,在订阅多个标的的时候,需要分类处理。这个是开始用掘金的时候,容易踩的坑。

知道了,处理起来也比较简单,干货代码:

if tick.symbol in context.orders :
    # 增强型高抛策略
    private_fun.monitor_boll(context, tick.symbol)

    if context.con_data.loc[context.con_data['symbol'] == tick.symbol].strategy1.values[0] == 1 :
        private_fun.order_up(context, tick.symbol)
    # 通用高抛低收策略
    if context.con_data.loc[context.con_data['symbol'] == tick.symbol].strategy2.values[0] == 1 :
        private_fun.order_updown(context, tick.symbol)
    # 通用boll策略
    if context.con_data.loc[context.con_data['symbol'] == tick.symbol].strategy3.values[0] == 1 :
        private_fun.order_boll(context,tick.symbol)
    # 逆向抛吸策略
    if context.con_data.loc[context.con_data['symbol'] == tick.symbol].strategy4.values[0] == 1 :
        private_fun.order_monitor(context, tick.symbol)
    # 顺向抛吸策略
    if context.con_data.loc[context.con_data['symbol'] == tick.symbol].strategy5.values[0] == 1 :
        private_fun.order_forward_monitor(context, tick.symbol)
    # 通道内 高抛低收  不设阀门
    if context.con_data.loc[context.con_data['symbol'] == tick.symbol].strategy6.values[0] == 1 :
        private_fun.order_trend_updown(context,tick.symbol)

这期就分享到这,后面会针对我实盘的策略架构,进行详细介绍


                
<think>好的,用户想找QMT网格交易的源码,我需要根据提供的引用资料来回答。首先,查看用户提供的引用内容: 引用1提到了迅投miniQMT的网格交易现,并指出有参数详解,可能包含相关代码。引用3则是一个关于使用qteasy自定义网格交易策略的教程,附有源码。引用4是关于QMT获取数据的方法,可能和策略现相关。 用户需要的是QMT网格交易的源码示例,但引用中的源码可能分散在不同的资源里。需要指出具体的源码位置,比如引用3提到了附源码,可以建议用户查看该资源。同时,引用1的代码可能已经被验证,但需要提醒用户注意风险。另外,引用4的数据获取方法可能在策略中用到,可以提及如何整合这些数据函数到网格策略中。 需要确保回答结构清晰,分步骤说明如何获取和现源码,同时引用相关文献。可能需要提到示例代码的结构,比如初始化参数、数据获取、网格计算、交易信号生成等部分。还要注意用户可能需要结合不同引用中的信息,比如参数设置和数据获取,来完善自己的策略。 最后,生成相关问题,帮助用户深入理解,比如优化方法、参数调整、风险管理等。</think>关于QMT网格交易策略的源码现,结合相关引用资料分析如下: ### 一、QMT网格交易现要点 1. **核心逻辑**:通过设定价格区间和网格数量,在价格波动中自动低买高卖 - 初始化参数:基准价$P_0$、网格间距$\Delta P$、网格层数$n$[^3] - 价格区间计算:$P_i = P_0 \pm i \times \Delta P$($i=1,2,...,n$) - 交易信号生成:当价格突破网格阈值时触发委托[^1] 2. **关键代码结构示例**: ```python # 引用3中qteasy策略框架 def grid_strategy(stock_data): # 初始化参数 base_price = 10.0 # 基准价 grid_size = 0.5 # 网格间距 position = 0 # 持仓数量 # 获取时行情(引用4数据接口) current_price = get_market_data_ex('price', stock_code) # 计算买卖信号 if current_price > base_price + grid_size: return 'SELL' elif current_price < base_price - grid_size: return 'BUY' else: return 'HOLD' ``` ### 二、源码获取途径 1. **官方示例**(需登录迅投官网下载QMT开发包) - 安装目录下`strategy_samples`文件夹包含基础策略模板 - 使用`xttrader`模块对接交易接口[^2] 2. **第三方现参考**: - GitHub搜索"QMT grid trading"可找到开源现 - 量化社区(如JoinQuant、掘金)有开发分享案例 3. **自定义开发建议**: ```python # 引用4资金流数据整合示例 def get_trading_signal(): # 获取资金流数据 fund_flow = get_market_data_ex('transactioncount1d', stock_list) # 结合网格条件生成信号 if fund_flow > threshold and price_condition: return execute_trade() ``` ### 三、风险控制现 1. 动态网格调整公式: $$ \Delta P_t = \Delta P_{t-1} \times \sqrt{\frac{V_t}{V_{avg}}} $$ 其中$V_t$为当前波动率,$V_{avg}$为历史平均波动率[^1] 2. 头寸管理代码片段: ```python # 引用1风险控制模块 max_position = 1000 # 最大持仓 current_pos = get_position() order_volume = min(max_position - current_pos, grid_volume) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

保哥量化

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值