获取labelimg标注真实框的宽高、归一化数据再存入列表当中

问题:目标检测往往需要聚类anchors,借助标注的真实框信息,怎么才能将可视化呢?
解决思路:获取labelimg标注真实框的宽高、归一化数据再存入列表当中即可。
方法:读取解析xml文件,比如Annotations文件夹下的xml文件(本博客以该方法讲解);txt文本数据挖掘,比如(2007_train.txt)
话不多说,直接上菜

import csv
import numpy as np
import glob
import xml.etree.ElementTree as ET
import matplotlib.pyplot as plt
import pandas as pd
import math
datas = []
# 对于每一个xml都寻找box
#获取labelimg标注真实框的宽高并归一化存入列表代码
path = r'VOCdevkit/VOC2007/Annotations'
for xml_file in glob.glob('{}/*xml'.format(path)):
    tree = ET.parse(xml_file)
    height = int(tree.findtext('./size/height'))
    width = int(tree.findtext('./size/width'))
    if height <= 0 or width <= 0:
        continue

    # 对于每一个目标都获得它的宽高
    for obj in tree.iter('object'):
        xmin = int(float(obj.findtext('bndbox/xmin'))) / width
        ymin = int(float(obj.findtext('bndbox/ymin'))) / height
        xmax = int(float(obj.findtext('bndbox/xmax'))) / width
        ymax = int(float(obj.findtext('bndbox/ymax'))) / height

        xmin = np.float64(xmin)
        ymin = np.float64(ymin)
        xmax = np.float64(xmax)
        ymax = np.float64(ymax)
        # 得到宽高
        #取小数点后两位
        a=xmax - xmin
        b=ymax - ymin
        c=2
        a=math.floor(a * 10 ** c) / (10 ** c)
        b=math.floor(b * 10 ** c) / (10 ** c)

        #datas.append([xmax - xmin, ymax - ymin])
        datas.append([a, b]
        #print(datas)
 """    
#获取labelimg标注真实框的宽高后直接存入列表代码
import numpy as np
from PIL import Image
import os
import glob
import random
import xml.etree.ElementTree as ET
import matplotlib.pyplot as plt
import pandas as pd

datas = []
# 对于每一个xml都寻找box
path = r'VOCdevkit/VOC2007/Annotations'
for xml_file in glob.glob('{}/*xml'.format(path)):
    tree = ET.parse(xml_file)
    height = int(tree.findtext('./size/height'))
    width = int(tree.findtext('./size/width'))
    if height <= 0 or width <= 0:
        continue

    # 对于每一个目标都获得它的宽高
    for obj in tree.iter('object'):
        xmin = int(float(obj.findtext('bndbox/xmin')))
        ymin = int(float(obj.findtext('bndbox/ymin')))
        xmax = int(float(obj.findtext('bndbox/xmax')))
        ymax = int(float(obj.findtext('bndbox/ymax')))

        xmin = np.int32(xmin)
        ymin = np.int32(ymin)
        xmax = np.int32(xmax)
        ymax = np.int32(ymax)
        # 得到宽高
        datas.append([xmax - xmin, ymax - ymin])
        #print(datas)
"""   

归一化后结果
在这里插入图片描述
未归一化结果
在这里插入图片描述
后期将介绍采用二维列表转csv格式,将真实框信息可视化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会飞的渔WZH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值