吴恩达老师深度学习课程完整笔记

为了方便学习深度学习课程,转载一个吴恩达老师的一个深度学习笔记,转载的网站是下面这个
https://blog.csdn.net/red_stone1/article/details/80207815

这里写图片描述

从去年8月份开始,AI界大IP吴恩达在coursera上开设了由5们课组成的深度学习专项课程,掀起了一股人工智能深度学习热潮。这里附上deeplearning.ai的官网:

deeplearning.ai

关于该深度学习专项课程,本人非常推荐!它对于理解各种算法背后的原理非常有帮助,同时提供了大量的应用场景,涉及图像、语音、自然语言理解等各方面,还提供了一些工具函数、数据集。笔者在学习这5门课之际,也精心制作了每门课程及精炼笔记,把每节课的主要核心内容记录下来。现在所有的笔记都已完成。为了方便大家查阅,特地将所有的笔记汇总在这篇文章里。

1. 神经网络与深度学习

2. 优化深度神经网络

3. 构建机器学习项目

4. 卷积神经网络CNN

5. 序列模型

6. 其它资源

台大林轩田机器学习基石资源汇总-GitHub

更多AI资源请关注微信公众号:AI有道(ID:redstonewill)
这里写图片描述

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 104
    点赞
  • 985
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Coursera深度学习教程中文笔记 课程概述 这些课程专为已有一定基础(基本的编程知识,熟悉Python、对机器学习有基本了解), 想要尝试进入人工智能领域的计算机专业人士准备。介绍显示:“深度学习是科技业最热门 的技能之一,本课程将帮你掌握深度学习。” 在这5堂课中,学生将可以学习到深度学习的基础,学会构建神经网络,并用在包括吴 恩达本人在内的多位业界顶尖专家指导下创建自己的机器学习项目。Deep Learning Specialization对卷积神经网络 (CNN)、递归神经网络 (RNN)、长短期记忆 (LSTM) 等深度学 习常用的网络结构、工具和知识都有涉及。 课程中也会有很多实操项目,帮助学生更好地应用自己学到的深度学习技术,解决真实 世界问题。这些项目将涵盖医疗、自动驾驶、和自然语言处理等时髦领域,以及音乐生成等 等。Coursera上有一些特定方向和知识的资料,但一直没有比较全面、深入浅出的深度学习 课程——《深度学习专业》的推出补上了这一空缺。 课程的语言是Python,使用的框架是Google开源的TensorFlow。最吸引人之处在于, 课程导师就是吴恩达本人,两名助教均来自斯坦福计算机系。完成课程所需时间根据不同的 学习进度,大约需要3-4个月左右。学生结课后,Coursera将授予他们Deep Learning Specialization结业证书。 “我们将帮助你掌握深度学习,理解如何应用深度学习,在人工智能业界开启你的职业 生涯。”吴恩达课程页面中提到。 本人黄海广博士,以前写过吴恩达老师机器学习个人笔记。有朋友报名了课程,下载 了这次课程的视频给大家分享。Coursera的字幕不全,同学们在学习上感觉非常不方便,因 此我找志同道合的朋友翻译和整理字幕,中英文字幕来自于由我和曹骁威同学组织爱好者翻 译,希望对大家有所帮助。(备注:自网易公开课翻译深度学习课程后,我们不再翻译) 目前我正在组织团队整理中文笔记,由热心的朋友无偿帮忙制作整理,并持续更新。我 们的团队的劳动致力于AI在国内的推广,不会损害Coursera以及吴恩达老师的商业利益。 本人水平有限,如有公式、算法错误,请及时指出,发邮件给我,也可以加我qq。 黄海广

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值