pytorch深度学习(3)--浅谈反向传播算法

引言

在上篇文章中,谈了对梯度下降算法的见解,对于单层神经网络,我们很容易计算出损失对权重的导数。而对于一个复杂的神经网络,如下图所示,我们很难求出损失函数对权重的导数。梯度下降法是寻找到最优点,即找到使损失函数最小值的点,从而达到良好优化效果。而反向传播算法就是求最终的输出,也即损失函数最小值对前面各个参数的偏导的过程。一个神经网络训练过程,它包括了前向传播、反向传播、以及更新损失参数三个基本部分。
在这里插入图片描述

深刻理解反向传播算法

在实践中,神经网络包含许多连接在一起的张量运算,每个运算都有简单的、已知的导数。
对于这种连接在一起、多层嵌套的函数链,我们可以通过链式求导法则应用于神经网络梯度值的计算,亦即在神经网络模型中反向传播算法的作用就是要求出这个梯度值,从而后续用梯度下降去更新模型参数。反向传播算法从模型的输出层开始,利用函数求导的链式法则,逐层从后向前求出模型梯度。
在这里插入图片描述

这是一个二层的链式求导法则。而事实上,我们的x也可能是某个二层多层的神经网络的输出,一层层嵌套。上面只是展示了一个简单的二层链式求导法则的示例。

示例

代码如下:

import torch

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

w = torch.Tensor([1.0])
w.requires_grad = True  # 默认的Tensor是不需要计算梯度的,此处定义为需计算梯度


# 定义模型
def forward(x):
    return x * w


# 定义损失函数,loss = (y' - y)²
def loss(x, y):
    y_pired = forward(x)
    return (y - y_pired) ** 2


print('predict(before training)', 4, forward(4).item())  #  .item()转换数据类型,

for epoh in range(100):
    for x, y in zip(x_data, y_data):
        l = loss(x, y)  #前馈
        l.backward()    #反馈
        print('\tgrad', x, y, w.grad.item())
        w.data = w.data - 0.01 * w.grad.data

        w.grad.zero_()  # 反向传播的梯度清零

    print('process', epoh, l.item())

print('predict(after tarining)', 4, forward(4).item())

输出部分结果

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wardeld

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值