息肉分割数据集kvasir-seg的处理

虽然做息肉分割除了kvasir-seg也没有太多好的选择,但这个数据集的问题挺多的,不能直接使用。相比其他领域的数据集,这个数据集真的很粗糙。

首先,需要二值化

kvasir-seg数据集作为一个只有单一前景的分割任务,按理说其mask只能是二值化的,但是现在却有不止两种值。其黑色区域的值可能是0, 1, 2, 3, 4, 5, 6, 7,8;白色区域可能是48, 249, 250, 251, 252, 253, 254, 255等。需要先做二值化。

其次,维度问题,要注意,最后输入训练的mask的channel必须是1.

第三,要注意用torch.FloatTensor将读取的图片数据转换为float类型,否则会报错

### 关于CVC-300息肉分割数据集的信息 #### 数据集概述 CVC-300是一个专门针对结肠镜检查中的息肉检测和分割设计的数据集。该数据集中包含了高质量的内窥镜视频片段,这些片段被转换成静态图像并进行了精确的手动标注[^1]。 #### 获取途径 对于希望获取此数据集的研究人员来说,可以通过访问官方资源网站来下载。具体而言,可以前往西班牙瓦伦西亚理工大学计算机视觉中心(CVC)发布的页面进行申请和下载。通常这类医学影像数据库会要求使用者注册账号并通过一定的审核流程以确保数据使用的合法性和适当性[^3]。 #### 使用说明 当涉及到如何利用CVC-300开展研究工作时,建议遵循如下指南: 为了使模型能够更好地学习到特征,在预处理阶段应当考虑对原始图片做标准化操作;同时也要注意调整输入尺寸使之适应所选网络架构的要求。另外值得注意的是,由于医疗领域内的样本往往存在类别不平衡现象,因此可能还需要采取一些策略比如过采样少数类或者加权损失函数等方式来进行优化[^4]。 ```python import os from PIL import Image import numpy as np def load_images_from_folder(folder): images = [] for filename in os.listdir(folder): img_path = os.path.join(folder,filename) if img_path.endswith(".png"): img = Image.open(img_path).convert('RGB') image_array = np.array(img) images.append(image_array) return np.array(images) train_data_dir = 'path_to_CVC_300_dataset/images' masks_data_dir = 'path_to_CVC_300_dataset/masks' X_train = load_images_from_folder(train_data_dir) Y_train = load_images_from_folder(masks_data_dir) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝海渔夫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值