息肉分割数据集kvasir-seg的处理

虽然做息肉分割除了kvasir-seg也没有太多好的选择,但这个数据集的问题挺多的,不能直接使用。相比其他领域的数据集,这个数据集真的很粗糙。

首先,需要二值化

kvasir-seg数据集作为一个只有单一前景的分割任务,按理说其mask只能是二值化的,但是现在却有不止两种值。其黑色区域的值可能是0, 1, 2, 3, 4, 5, 6, 7,8;白色区域可能是48, 249, 250, 251, 252, 253, 254, 255等。需要先做二值化。

其次,维度问题,要注意,最后输入训练的mask的channel必须是1.

第三,要注意用torch.FloatTensor将读取的图片数据转换为float类型,否则会报错

### 如何正确引用 Kvasir-Seg 数据集 Kvasir-SEG 是一个公开可用的用于医学图像分析的数据集,特别是在息肉分割领域具有一定的应用价值。为了正确引用该数据集,在学术研究或技术文档中通常需要遵循特定的引用格式。 以下是关于 Kvasir-SEG 数据集的标准引用方法: #### 官方推荐的引用方式 官方建议通过以下 BibTeX 格式来引用 Kvasir-SEG 数据集[^1]: ```bibtex @article{kvasirseg_dataset, author = {Sørensen, Stian Brodtkorb and Halvorsen, Pål and Lindseth, Frede}, title = {{Kvasir-SEG} -- A Segmented Polyp Dataset}, journal = {arXiv preprint arXiv:2007.08905}, year = {2020} } ``` 如果是在论文或其他正式出版物中引用,则可以采用如下 APA 风格的引用格式: > Sørensen, S. B., Halvorsen, P., & Lindseth, F. (2020). *Kvasir-SEG – A segmented polyp dataset*. arXiv preprint arXiv:2007.08905. #### 使用场景中的注意事项 尽管 Kvasir-SEG 被广泛应用于息肉分割的研究工作,但在实际使用过程中需要注意其质量上的局限性。有研究表明此数据集中存在标注不一致等问题,因此可能不适合某些高精度需求的任务[^2]。对于希望利用少量样本对模型(如 SAM 模型)进行微调的情况,仍需谨慎评估数据的质量及其适用范围[^3]。 ### Python 中加载并验证数据集的小例子 下面是一个简单的脚本示例,展示如何从本地路径读取部分 Kvasir-SEG 图像文件作为测试用途: ```python import os from PIL import Image def load_kvasir_seg_images(data_dir): image_files = [f for f in os.listdir(os.path.join(data_dir, 'images')) if f.endswith('.jpg')] mask_files = [f.replace('.jpg', '.png') for f in image_files] images = [] masks = [] for img_file, msk_file in zip(image_files, mask_files): img_path = os.path.join(data_dir, 'images', img_file) msk_path = os.path.join(data_dir, 'masks', msk_file) with Image.open(img_path) as img, Image.open(msk_path) as msk: images.append(img.convert('RGB')) masks.append(msk.convert('L')) return images, masks data_directory = './path_to_Kvasir_SEG' # 替换为您的数据存储位置 loaded_images, loaded_masks = load_kvasir_seg_images(data_directory) print(f"成功加载了{len(loaded_images)}张图片与其对应的掩码.") ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝海渔夫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值