一、cuda环境与配置
本人使用的是cuda11.6.2+VS2022+cudnn8.4.1.50。总结一下安装经验:
1.先安装VS,再安装cuda,在检验完VS中的cuda模块后,再将cudnn进行安装
2.在测试安装成功与否是,由win+r输入cmd打开命令窗口,将在命令窗口中输入nvcc -V(注意大小写)若成功显示cuda版本号,则安装成功,再将两个.exe程序拖入命令窗口中执行,多试几次,会发生闪退情况不要惊慌,多试几次就正常了。
3.建议将cuda安装在c盘中,安装在其他盘中可能会出现nvcc命令无法执行。
4.卸载时可以将带NVIDIA的程序全部卸载,可以按照时间筛选。不用担心安装,NVIDA的安装程序还是很方便的。
二、GPU的硬件基本结构
GPU的线程组织模型:GRID-BLOCK-WARP(一组线程)-THREAD(线程)
可以通俗的把GRID理解为科室,BLOCK为部门。
GPU的存储器:
共享存储器、全局存储器、常量存储器、局部存储器(本地存储器)。
共享存储器:位于BLOCK内部,程序优化时重点考虑,,以达成延时隐藏的目的。
全局存储器:又称为显存读取较慢,造成较大时延。
常量存储器:用于存储一些常量的值,例如pi等。
局部存储器:读取慢。
GPU的应用场景:
1.成千上万的独立工作
2.可共享的指令流
3.计算密集任务