Windows的torch + Cuda + cuDNN

1、CUDA下载

使用NVIDIA-SMI命令查看合适自己电脑的CUDA版本

nvidia-smi

进入NVIDIA官网下载CUDA

https://developer.nvidia.com/cuda-toolkit-archive

找到合适电脑版本的CUDA版本

点击CUDA Toolkit 10.2进入下载页面,选择操作系统版本,架构,电脑系统版本,安装类型选择local,然后选择base installer下载CUDA

2、 cuDNN下载

根据下载的CUDA版本选择cuDNN下载,CUDA版本一定要和cuDNN版本想对应 

进入到NVIDIA官网,下载对应的cuDNN

https://developer.nvidia.com/rdp/cudnn-archive

选择cuDNN v8.1.0版本然后选择cuDNN Library for Windows 10

首次下载cuDNN要先使用邮箱注册,注册完在重新选择下载即可 

3、CUDA安装

使用默认安装路径就可以,一定要安装在c盘

同意下一步

选择自定义安装

 

后面安装选项默认即可

4、cuDNN

将下载的压缩包解压,并将文件夹中的所有内容复制到cuda的文件夹,替换同名文件夹

 

CUDA和cuDNN安装完成

5、安装pytorch

 (1)打开anaconda prompt

 (2)创建一个使用pytorch的新环境

conda create -n pytorch-gpu python=3.7

(3)进入环境

根据提示进入环境

conda activate pytorch-gpu

 

 

(4)进入pytorch官网查看安装命令 

https://pytorch.org/get-started/previous-versions/

一定要和CUDA版本对应,否则会出现问题 

pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html

(5)安装完成以后验证是否安装成功

import torch
torch.__version__
torch.cuda.is_available()

结果返回true表示安装成功

6、torch-geometric安装

在pytorch官网找到下载地址

Installation — pytorch_geometric documentation

官网只有最新的两个版本的pytorch下载,因此找到历史版本,下载

点击torch-1.8.1+cu102,然后,选择参数与python版本相同的四个文件进行下载,其中cp37表示python版本3.7

然后将下载好的文件放入到anaconda的Scripts文件夹中

在环境下安装torch-geometric

pip install torch-geometric

 使用list命令查看

conda list | findstr torch

 

 

 

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值