1、CUDA下载
使用NVIDIA-SMI命令查看合适自己电脑的CUDA版本
nvidia-smi
进入NVIDIA官网下载CUDA
https://developer.nvidia.com/cuda-toolkit-archive
找到合适电脑版本的CUDA版本
点击CUDA Toolkit 10.2进入下载页面,选择操作系统版本,架构,电脑系统版本,安装类型选择local,然后选择base installer下载CUDA
2、 cuDNN下载
根据下载的CUDA版本选择cuDNN下载,CUDA版本一定要和cuDNN版本想对应
进入到NVIDIA官网,下载对应的cuDNN
https://developer.nvidia.com/rdp/cudnn-archive
选择cuDNN v8.1.0版本然后选择cuDNN Library for Windows 10
首次下载cuDNN要先使用邮箱注册,注册完在重新选择下载即可
3、CUDA安装
使用默认安装路径就可以,一定要安装在c盘
同意下一步
选择自定义安装
后面安装选项默认即可
4、cuDNN
将下载的压缩包解压,并将文件夹中的所有内容复制到cuda的文件夹,替换同名文件夹
CUDA和cuDNN安装完成
5、安装pytorch
(1)打开anaconda prompt
(2)创建一个使用pytorch的新环境
conda create -n pytorch-gpu python=3.7
(3)进入环境
根据提示进入环境
conda activate pytorch-gpu
(4)进入pytorch官网查看安装命令
https://pytorch.org/get-started/previous-versions/
一定要和CUDA版本对应,否则会出现问题
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
(5)安装完成以后验证是否安装成功
import torch
torch.__version__
torch.cuda.is_available()
结果返回true表示安装成功
6、torch-geometric安装
在pytorch官网找到下载地址
Installation — pytorch_geometric documentation
官网只有最新的两个版本的pytorch下载,因此找到历史版本,下载
点击torch-1.8.1+cu102,然后,选择参数与python版本相同的四个文件进行下载,其中cp37表示python版本3.7
,
然后将下载好的文件放入到anaconda的Scripts文件夹中
在环境下安装torch-geometric
pip install torch-geometric
使用list命令查看
conda list | findstr torch