第十五章:stable diffusion Controlnet进阶玩法

一.图生图基本方法

1.挑选一张合适得角色原图,导入sd图生图中,然后书写提示词,尽可能得描述角色,你也可以利用提示词反推功能,然后选择大模型,设置参数,注意得一点是将重绘幅度设置在0.5左右,点击生成就得到一副三次元写真了不过你想要得到一张更为满意得图,可能还需要对细节做出一些处理

二.有时姿势细节不足时,就需要用到controlnet,这里有一个非常好的模型,lineart,它可以提取信息生成一副线稿图

1.基于上面的几步,我们再次接着上面得操作,打开controlnet,勾选完美像素,选择lineart预处理器

在有导入得图片下,选择一个预处理器,点击爆炸按钮,就会提取成线稿模样

### Stable DiffusionControlNet 技术详解 #### 控制生成过程中的不确定性 Stable Diffusion 是一种强大的图像生成功能,能够基于文本描述创建视觉内容。不过,在实际应用过程中发现仅依赖于复杂的提示词难以精准控制输出效果[^2]。 为了改善这一点,ControlNet 扩展被引入到 Stable Diffusion 中来增强模型的表现力。通过利用额外的信息作为条件输入给扩散模型,使得用户可以在一定程度上指导生成流程,从而获得更加符合预期的结果。 #### 获取并加载预训练好的 Community Model 对于想要尝试不同风格或者特定功能的使用者来说,可以从 Hugging Face 平台获取由社区贡献的各种本的 ControlNet 模型文件。这些资源位于指定链接下,并且支持直接应用于个人项目之中[^1]: - 社区 ControlNet 模型下载地址:<https://huggingface.co/lllyasviel/sd_control_collection/tree/main> #### 配置 WebUI 插件以启用 ControlNet 功能 当已经在本地环境中部署好了基础 Stable Diffusion 后,下一步就是安装对应的插件以便更好地操作新加入的功能模块。这通常涉及到修改配置文件以及确保所有必要的依赖项都已经正确设置完毕。完成之后就可以在图形界面里找到新增加的操作选项了。 #### 调整参数优化输出质量 值得注意的是,除了简单的开启关闭之外,还可以进一步微调一些高级设定比如 `controlnet_exit_step` 来影响整个渲染周期内的干预程度。例如将该值设为 0.8 表明只会在前百分之八十的时间段内保持激活状态直到第 24 步结束时停止作用[^5]。 ```python from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler import torch model_id = "runwayml/stable-diffusion-v1-5" scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler).to("cuda") prompt = "A fantasy landscape with mountains and rivers." image = pipe(prompt=prompt, controlnet_model="path_to_your_downloaded_ControlNet", controlnet_exit_step=0.8).images[0] image.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DarkQE

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值