动态规划_机器人不同路径

不同路径-version 1

题目均来自leetcode

问题描述:

一个机器人位于一个 m x n 网格的左上角 。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角
问总共有多少条不同的路径?

动态规划思想:

首先依然是要定义状态dp。
我们设置 dp[i][j] : 存放着到达该点的不同路径的总数。
思考转移方程:

  • 首先考虑第一行 与 第一列,因为只能向右或者向下,因此第一行的点只能由它左边的点到达;同理,第一列的点只能由它上面的点到达。因此 dp[i][0] 和 dp[0][j] 均为 1。
  • 在其他的点,它可以由上面的点或者左边的点到达。因此dp[i][j] = dp[i][j-1] + dp[i-1][j]
  • 出发点我们也认为是一种路径,即 dp[0][0] = 1
    之后就是将遍历将数组填满。
public int uniquePaths(int m, int n) {
	int[][] dp = new int[m][n];
	
	for(int i=0;i<m;i++)
		for(int j=0;j<n;j++){
			//在起始点
			if(i==0 && j==0){
				dp[i][j] = 1;
			}else if(i==0 && j<n){    //第一行
				dp[i][j] = dp[i][j-1];
			}else if(i<m && j==0){	 //第一列
				dp[i][j] = dp[i-1][j]; 
			}else{
				dp[i][j] = dp[i-1][j] + dp[i][j-1];  //其他格子
			}
		}

	return dp[m-1][n-1];
}

优化方案:其实我们可以优化空间。

//内存优化
    public int uniquePaths(int m, int n) {
        //pre数组用来存储上一行的数据
        int[] pre = new int[n]; 
        int[] cur = new int[n];
        //数组元素全部填充1
        Arrays.fill(pre,1);
        Arrays.fill(cur,1);
        for(int i=1;i<m;i++){
          for(int j=1;j<n;j++){
            cur[j] = cur[j-1] + pre[j];
          }  
          //将目前一行复制给pre,当前行作为上一行
          pre = cur.clone();
        }
        return pre[n-1];
    }

不同路径-version 2

问题描述:

情况与version 1 一样,但是增加了一个条件,网格中的障碍物和空位置分别用 1 和 0 来表示。

动态规划思想:

所设置与version 1 一样,只是代码要增加一些判断。

  • 对于第一行和第一列,当自己本身存在障碍物,那么是不可达的,同时导致后面的所有点也不可达,即存储的值为0.
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
	int row = obstacleGrid.length;
	int column = obstacleGrid[0].length;
	int[][] dp = new int[row][column];
	//如果起点有障碍物,不可达
	if(obstacleGrid[0][0] == 1) return 0;
	//如果终点有障碍物,不可达
	if(obstacleGrid[row-1][column-1] == 1) return 0;
	
	dp[0][0] = 1;
	//第一行
	for(int i=0;i<column;i++){
		if(obstacleGrid[0][i] == 0){
			dp[0][i] = dp[0][i-1];
		}else{
			break;
		}
	}
	//第一列
	for(int i=0;i<row;i++){
		if(obstacleGrid[i][0] == 0){
			dp[i][0] = dp[i-1][0];
		}else{
			break;
		}
	}
	for(int i=1;i<row;i++)
		for(int j=0;j<column;j++){
			if(obstacleGrid[i][j] == 0){
				dp[i][j] = dp[i-1][j] + dp[i][j-1];
			}
		}

	return dp[row-1][column-1];
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值