不同路径-version 1
题目均来自leetcode
问题描述:
一个机器人位于一个 m x n 网格的左上角 。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角
问总共有多少条不同的路径?
动态规划思想:
首先依然是要定义状态dp。
我们设置 dp[i][j] : 存放着到达该点的不同路径的总数。
思考转移方程:
- 首先考虑第一行 与 第一列,因为只能向右或者向下,因此第一行的点只能由它左边的点到达;同理,第一列的点只能由它上面的点到达。因此 dp[i][0] 和 dp[0][j] 均为 1。
- 在其他的点,它可以由上面的点或者左边的点到达。因此dp[i][j] = dp[i][j-1] + dp[i-1][j]。
- 出发点我们也认为是一种路径,即 dp[0][0] = 1。
之后就是将遍历将数组填满。
public int uniquePaths(int m, int n) {
int[][] dp = new int[m][n];
for(int i=0;i<m;i++)
for(int j=0;j<n;j++){
//在起始点
if(i==0 && j==0){
dp[i][j] = 1;
}else if(i==0 && j<n){ //第一行
dp[i][j] = dp[i][j-1];
}else if(i<m && j==0){ //第一列
dp[i][j] = dp[i-1][j];
}else{
dp[i][j] = dp[i-1][j] + dp[i][j-1]; //其他格子
}
}
return dp[m-1][n-1];
}
优化方案:其实我们可以优化空间。
//内存优化
public int uniquePaths(int m, int n) {
//pre数组用来存储上一行的数据
int[] pre = new int[n];
int[] cur = new int[n];
//数组元素全部填充1
Arrays.fill(pre,1);
Arrays.fill(cur,1);
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
cur[j] = cur[j-1] + pre[j];
}
//将目前一行复制给pre,当前行作为上一行
pre = cur.clone();
}
return pre[n-1];
}
不同路径-version 2
问题描述:
情况与version 1 一样,但是增加了一个条件,网格中的障碍物和空位置分别用 1 和 0 来表示。
动态规划思想:
所设置与version 1 一样,只是代码要增加一些判断。
- 对于第一行和第一列,当自己本身存在障碍物,那么是不可达的,同时导致后面的所有点也不可达,即存储的值为0.
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int row = obstacleGrid.length;
int column = obstacleGrid[0].length;
int[][] dp = new int[row][column];
//如果起点有障碍物,不可达
if(obstacleGrid[0][0] == 1) return 0;
//如果终点有障碍物,不可达
if(obstacleGrid[row-1][column-1] == 1) return 0;
dp[0][0] = 1;
//第一行
for(int i=0;i<column;i++){
if(obstacleGrid[0][i] == 0){
dp[0][i] = dp[0][i-1];
}else{
break;
}
}
//第一列
for(int i=0;i<row;i++){
if(obstacleGrid[i][0] == 0){
dp[i][0] = dp[i-1][0];
}else{
break;
}
}
for(int i=1;i<row;i++)
for(int j=0;j<column;j++){
if(obstacleGrid[i][j] == 0){
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[row-1][column-1];
}