朗伯函数在高考数字中的应用

本文探讨了朗伯W函数在解决特定形式超越方程中的应用,通过转换方程形式并利用该函数的特性,可以有效求解实数根。文章还介绍了如何通过朗伯W函数寻找函数的最大值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在中学阶段通常用以解形如

 

的方程(往往是超越方程),将其实数根记为W(a),由图像可以看出,在a>=0时,这个方程只有一个根,这样有什么用?

 

令k=-a, a>0, 由朗伯函数表示可得x1=exp(-W(a)), x2=-W(a), 由约化公式:

等式为k^2 * e^(k), 求下面函数最大值即可。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值