Leetcode1269. 停在原地的方案数 (从递归解法到记忆化搜所再到动态规划)

 

这道题目第一思路就是递归暴力枚举,不难写出如下C++代码

typedef long long LL;
const int mod = (int)1e9 + 7;
class Solution {
public:
    int numWays(int steps, int arrLen) {
        dfs(steps, 0, arrLen);
        return res % mod;
    }

    LL res = 0;

    void dfs(int steps, int i, int arrLen){
        if(steps == 0){
            if(i == 0){
                res++;
            }
            return;
        }
        if(i + 1 < arrLen){
            dfs(steps - 1, i + 1, arrLen);
        }
        if(i - 1 >= 0){
            dfs(steps - 1, i - 1, arrLen);
        }
        dfs(steps - 1, i, arrLen);
    
    }
};

对于题目中的步数,这样的搜索显然是超时的,所以最直接的解法,就是做记忆话优化。最简单优雅的实现是用Python来写

class Solution:
    def numWays(self, steps: int, arrLen: int) -> int:
        mod_ = 10**9 + 7
        @lru_cache(None)
        def f(steps, i):
            if steps == 0:
                return 1 if i == 0 else 0
            ans = 0
            ans += f(steps - 1, i) % mod_
            if i > 0:
                ans += f(steps - 1, i - 1) % mod_
            if i < arrLen - 1:
                ans += f(steps - 1, i + 1) % mod_
            return ans % mod_
    
        return f(steps, 0)
    

改成动态规划实现:

const int MOD = (int)1e9 + 7;
class Solution {
public:
    int numWays(int steps, int arrLen) {
        // f[i][j]表示第i步走到位置j的方案数
        // f[i][j] = f[i-1][j] + f[i-1][j-1] + f[i-1][j+1]
        vector<vector<int>> f(steps+1, vector<int>(arrLen));
        f[0][0] = 1;
        for(int i = 1; i <= steps; i++){
            for(int j = 0; j < arrLen; j++){
                f[i][j] = f[i - 1][j] % MOD;
                if(j >= 1){
                    f[i][j] = (f[i][j] + f[i - 1][j - 1]) % MOD;
                }
                if(j < arrLen - 1){
                    f[i][j] = (f[i][j] + f[i - 1][j + 1]) % MOD;
                }
            }
        }
        return f[steps][0];
    }
};

还是超时,因为当数组长度比较大,但steps比较小时,存在大量重复计算

 因此优化一下状态空间:

const int MOD = (int)1e9 + 7;
class Solution {
public:
    int numWays(int steps, int arrLen) {
        // f[i][j]表示第i步走到位置j的方案数
        // f[i][j] = f[i-1][j] + f[i-1][j-1] + f[i-1][j+1]
        int maxLen = min(arrLen, steps);
        vector<vector<int>> f(steps + 1, vector<int>(maxLen + 1));
        f[0][0] = 1;
        for(int i = 1; i <= steps; i++){
            for(int j = 0; j < maxLen; j++){
                f[i][j] = f[i - 1][j];
                if(j >= 1){
                    f[i][j] = (f[i][j] + f[i - 1][j - 1]) % MOD;
                }
                if(j < maxLen - 1){
                    f[i][j] = (f[i][j] + f[i - 1][j + 1]) % MOD;
                }
            }
        }
        return f[steps][0];
    }
};

后续还可以优化空间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值