2020年六级翻译:三国演义

三国演义是中国一部著名的历史小说

The Romance of the Three Kingdoms is a famous historical novel in China.

写于14世纪

written in the 14th century

这部文学作品以三国时期的历史为基础

This literary work is based on the history of the Three Kingdoms period

描写了从公元2世纪下半叶到公元3世纪下半叶的魏,蜀,吴三国之间的战争

It describes the war between Wei, Shu and Wu from the second half of the 2nd century to the second half of the 3rd century.

小说中刻画了近千个人物和无数的历史事件

The novel depicts nearly a thousand characters and countless historical events

这些人物和事件虽然大多是基于真实的历史

Although most of these person in literature and events are based on real history.

但都不同程度地浪漫化和戏剧化了。

But they are romantic and dramatic to varying degrees.

三国演义是一部公认的文学杰作。

The Romance of the Three Kingdoms is an accepted literary masterwork.

自面世以来

Since its launch(publish)

这部小说不断吸引着一代又一代的读者

The novel continues to attract readers from generation to generation.

并且对中国文化产生着广泛而持久的影响

And it has a broad and lasting impact on Chinese culture.

### 实现《三国演义》中人物出场次数统计 为了完成这一目标,可以采用 Python 结合 `jieba` 库来处理中文文本并进行分词操作。以下是具体实现方法: #### 准备工作 首先安装必要的库: ```bash pip install jieba numpy matplotlib wordcloud ``` #### 加载与预处理数据 加载《三国演义》电子书文件,并对其进行初步清理。 ```python import jieba from collections import Counter import re # 打开并读取文件内容 with open('三国演义.txt', 'r', encoding='utf-8') as f: content = f.read() # 清洗数据:移除非汉字字符 cleaned_content = re.sub(r'[^\u4e00-\u9fff]+', '', content) # 使用结巴分词器对清洗后的文本进行分词 words = jieba.lcut(cleaned_content) ``` #### 过滤无关词汇 由于直接通过分词得到的结果可能包含大量无意义单词(如“之”,“其”),因此需要构建一个停用词表用于过滤这些词语。 ```python stop_words = set() with open('stopwords.txt', 'r', encoding='utf-8') as swf: for line in swf: stop_words.add(line.strip()) filtered_words = [word for word in words if word not in stop_words and len(word)>1] ``` #### 计算词频 利用 `Counter` 来计算每个词语出现的频率,并筛选出排名靠前的人物名称。 ```python counter = Counter(filtered_words) # 获取最常见的人名及其对应的频率 top_characters = counter.most_common(20) # 可调整数量以获取更多或更少条目 print(top_characters) ``` #### 数据可视化 最后一步是对上述结果做简单的图表展示,以便直观理解统计数据。 ```python import matplotlib.pyplot as plt names, counts = zip(*top_characters) plt.figure(figsize=(10,6)) plt.barh(names[::-1], counts[::-1]) plt.title('Top Characters Frequency') plt.xlabel('Frequency') plt.ylabel('Character Names') plt.show() ``` 此过程涵盖了从准备环境到最终呈现分析成果的所有环节[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值