该问题等价于x^17=1,可以用根等式求解。
首先来看正五边形,x^5=1
(x-1)(1+x+x^2+x^3+x^4)=0
x + x^2 + x^3 + x^4 = -1
其中x = exp(2*pi/5)
计算(x + x^4) (x^2 + x^3) = x^3 + x^4 + x^6 + x^7 = x + x^2 + x^3 + x^4 = -1
分组的依据是共轭复数肯定放在一起。
正十七边形
x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8
x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 = -1
如何第一次分组?
共轭复数一定在一起。相城后共有64项,化简后还是会实现相同的结果。
猜测相乘后等于-4。