正十七边形尺规作图可解性复数证明

本文探讨了解决x^17=1等式的方法,通过根式求解并引入正五边形的性质。讨论了如何利用共轭复数进行分组,以解决正十七边形的类似问题。尽管最终结果猜测为相乘后等于-4,但文章主要展示了数学在几何构造中的复杂应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

该问题等价于x^17=1,可以用根等式求解。

首先来看正五边形,x^5=1

(x-1)(1+x+x^2+x^3+x^4)=0

x + x^2 + x^3 + x^4 = -1

其中x = exp(2*pi/5)

计算(x + x^4) (x^2 + x^3) = x^3 + x^4 + x^6 + x^7 = x + x^2 + x^3 + x^4 = -1

分组的依据是共轭复数肯定放在一起。

正十七边形

x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 

x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 = -1

如何第一次分组?

共轭复数一定在一起。相城后共有64项,化简后还是会实现相同的结果。

猜测相乘后等于-4。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值