Tensorboard使用入门,用于可视化loss,accuracy等数据

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# 载入数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)

# 批次的大小
batch_size = 50

# 计算一共有多少批次
n_batch = mnist.train.num_examples // batch_size


# 参数概要
def variable_summary(var):
    with tf.name_scope("summaries"):
        mean = tf.reduce_mean(var)
        tf.summary.scalar("mean", mean)   # 平均值
    with tf.name_scope("stddev"):
        stddev = tf.sqrt(tf.reduce_mean(var-mean))
    tf.summary.scalar("stddev", stddev)   # 标准差
    tf.summary.scalar("max", tf.reduce_max(var))  # 最大值
    tf.summary.scalar("min", tf.reduce_min(var))  # 最小值
    tf.summary.histogram("histogram", var)   # 直方图





# 输入命名空间
with tf.name_scope("input"):
    # 定义两个placeholder
    x = tf.placeholder(tf.float32, [None, 28 * 28])
    y = tf.placeholder(tf.float32, [None, 10])

wit
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值