import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 载入数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
# 批次的大小
batch_size = 50
# 计算一共有多少批次
n_batch = mnist.train.num_examples // batch_size
# 参数概要
def variable_summary(var):
with tf.name_scope("summaries"):
mean = tf.reduce_mean(var)
tf.summary.scalar("mean", mean) # 平均值
with tf.name_scope("stddev"):
stddev = tf.sqrt(tf.reduce_mean(var-mean))
tf.summary.scalar("stddev", stddev) # 标准差
tf.summary.scalar("max", tf.reduce_max(var)) # 最大值
tf.summary.scalar("min", tf.reduce_min(var)) # 最小值
tf.summary.histogram("histogram", var) # 直方图
# 输入命名空间
with tf.name_scope("input"):
# 定义两个placeholder
x = tf.placeholder(tf.float32, [None, 28 * 28])
y = tf.placeholder(tf.float32, [None, 10])
wit
Tensorboard使用入门,用于可视化loss,accuracy等数据
最新推荐文章于 2025-03-10 16:15:10 发布