DeepSeek + Playwright 实战:零编码实现自动化测试全覆盖

📝 面试求职: 「面试试题小程序」 ,内容涵盖 测试基础、Linux操作系统、MySQL数据库、Web功能测试、接口测试、APPium移动端测试、Python知识、Selenium自动化测试相关、性能测试、性能测试、计算机网络知识、Jmeter、HR面试,命中率杠杠的。(大家刷起来…)

📝 职场经验干货:

软件测试工程师简历上如何编写个人信息(一周8个面试)

软件测试工程师简历上如何编写专业技能(一周8个面试)

软件测试工程师简历上如何编写项目经验(一周8个面试)

软件测试工程师简历上如何编写个人荣誉(一周8个面试)

软件测试行情分享(这些都不了解就别贸然冲了.)

软件测试面试重点,搞清楚这些轻松拿到年薪30W+

软件测试面试刷题小程序免费使用(永久使用)


本文介绍了 DeepSeek 低代码测试实践,通过自然语言交互和 AI 技术帮助团队轻松实现自动化测试全覆盖。

一、 行业趋势与需求背景

根据 Gartner 2024 年报告,全球测试工程师缺口已达到 140 万,同时 DevOps 流程对测试周期的要求日益严格,要求缩短 60% 以上。在这种背景下,低代码/无代码测试工具的优势显得尤为突出:

  • • 降低技术门槛:使非技术人员也能直接参与测试设计与编写,无需编写代码。

  • • 加速敏捷交付IDC 预测到 2024 年,全球低代码测试市场规模将突破 72 亿美元,成为行业的核心需求。

  • • 应对复杂场景:在微服务架构和跨系统测试需求激增的背景下,低代码工具能够高效应对业务的复杂性和多样性。

二、 技术实现原理

2.1. 核心流程

DeepSeek 的低代码测试方案通过以下核心流程,将自然语言需求转化为可执行的自动化测试脚本:

  • • 自然语言指令输入:用户通过简洁的自然语言描述测试需求。

  • • NLP 解析DeepSeek 使用自然语言处理(NLP)技术对指令进行解析,识别测试意图和核心元素。

  • • 逻辑树生成:基于需求,DeepSeek 自动构建测试逻辑树,确定测试动作和断言条件。

  • • Playwright 代码合成:将逻辑树转化为具体的 Playwright 测试代码。

  • • 自愈执行:内置智能机制自动适应元素定位变化和动态等待策略,确保脚本稳定执行。

2.2. 典型场景示例

假设用户输入如下自然语言需求:

验证商品搜索功能:
1. 输入"无线耳机",点击搜索
2. 结果页展示≥10条商品
3. 按"价格从低到高"排序,首条价格≤200元

DeepSeek 自动输出对应的 Playwright 测试代码:

test('商品搜索验证', async ({ page }) => {  
  await page.fill('#search-input', '无线耳机');  
  await page.click('#search-button');  
  await expect(page.locator('.product-item')).toHaveCountGreaterThanOrEqual(10);  
  await page.selectOption('#sort-select', { label: '价格从低到高' });  
  const price = await page.locator('.product-price:first-child')  
    .evaluate(el => parseFloat(el.textContent.replace('¥', '')));  
  expect(price).toBeLessThanOrEqual(200);  
});

2.3 关键技术

  • • 智能元素定位DeepSeek 能自动匹配语义化选择器(如 #search-input),提高脚本的准确性和稳定性。

  • • 动态等待:通过 page.waitForSelector 等动态等待策略,避免因页面元素加载过慢或延迟而导致测试失败。

  • • 数据清洗DeepSeek 自动转换数据格式(如将“¥200”转换为数字 200),提升脚本的可用性和通用性。

三、 高级功能与代码示例

3.1. 跨平台移动端测试

DeepSeek 不仅支持 Web 测试,还能一键生成适用于移动端的测试脚本。以下是一个移动端登录功能的测试示例:

test('App 登录验证', async ({ page }) => {  
  await page.fill('#username', 'test_user');  
  await page.fill('#password', 'password123');  
  await page.tap('#login-btn');  
  await expect(page).toHaveURL('home');  
  await page.context().setOffline(true);  // 模拟断网  
  await page.tap('#login-btn');  
  await expect(page.locator('.network-error')).toContainText('网络连接失败');  
});

3.2 视觉验证

DeepSeek 支持通过 Playwright 进行视觉验证,确保页面的布局和外观符合预期。例如,检查首页布局:

test('首页布局检查', async ({ page }) => {  
  await page.goto('/home');  
  expect(await page.screenshot())  
    .toMatchSnapshot('homepage-baseline.png', { threshold: 0.1 });  
});

四、实施路径与实测数据

4.1. 三步落地流程

  • • 结构化输入:使用 DeepSeek 提供的测试指令编辑器,支持 MarkdownExcel 等格式定义测试目标与步骤。

  • • 自动生成与调试:通过编辑器实时生成测试代码并进行验证,确保逻辑准确无误。

  • • 流水线集成:通过 API 将 DeepSeek 集成到 Jenkins 或 GitLab CI 流水线,实现自动化脚本的更新与执行。

4.2. 效率对比

指标

传统手工测试

DeepSeek 低代码测试

用例设计耗时

8小时/场景

0.5小时/场景

脚本开发耗时

6小时/场景

0小时(自动生成)

异常场景覆盖率

52%

89%

五、局限性及应对策略

5.1. 复杂异步场景

  • • 问题:对于 WebSocket 等长连接场景,DeepSeek 目前仍需要人工补充等待策略。

  • • 解决方案:用户可通过图形化条件配置器定义等待规则,自动添加合适的等待策略。

5.2. 定制化断言

  • • 问题:对于一些特殊的校验规则,用户可能需要扩展断言库。

  • • 解决方案DeepSeek 提供自定义函数注入接口,允许用户定义专属的断言逻辑,灵活满足个性化需求。

六、结语

DeepSeek 的低代码测试方案通过自然语言交互、AI 逻辑合成和自动化维护机制,打破了技术门槛,让非技术人员也能轻松参与自动化测试工作。通过实测,DeepSeek 显著提高了测试效率和异常场景覆盖率,帮助企业缩短开发周期并提升软件质量。建议企业从标准化流程(如登录、支付等)开始试点,结合团队资源逐步推广,最终实现全流程的自动化测试。

如果你觉得本教程对你有帮助,还请 点个赞,关个注,下次更新不迷路!

最后: 下方这份完整的软件测试视频教程已经整理上传完成,需要的朋友们可以自行领取【保证100%免费】
在这里插入图片描述
在这里插入图片描述

### 如何使用 DeepSeek 和 Python 自动生成测试用例 #### 利用语义搜索和知识推荐能力生成基础测试用例 通过集成 DeepSeek 的强大语义搜索能力和知识推荐引擎,可以从需求文档中提取关键信息来创建初步的测试框架。这一步骤能够显著减少手动编写基本测试逻辑的时间成本。 ```python import deepseek as ds def generate_base_test_cases(requirement_doc_path): """基于需求文档生成基础测试用例""" client = ds.Client(api_key='your_api_key') requirements = client.extract_requirements_from_document(requirement_doc_path) test_cases = [] for req in requirements: case_template = f"# 测试 {req['feature']}\n" case_template += f"def test_{ds.utils.slugify(req['description'])}():\n" case_template += " pass\n\n" test_cases.append(case_template) return ''.join(test_cases) ``` [^1] #### 复用已有用例并补充新的测试案例 为了提高效率,在现有项目基础上复用已有的测试用例是非常重要的策略之一。借助于 DeepSeek 对相似度匹配的支持,可以在历史版本或其他模块中的测试集中找到可重复利用的部分,并针对当前项目的特定情况进行调整和完善。 ```python from difflib import SequenceMatcher def find_similar_tests(new_req, existing_tests): """查找与新需求最接近的历史测试用例""" best_match = None highest_ratio = 0 for et in existing_tests: ratio = SequenceMatcher(None, new_req.lower(), et.description.lower()).ratio() if ratio > highest_ratio and ratio >= 0.7: # 设置阈值以过滤不相关项 highest_ratio = ratio best_match = et return best_match existing_tests = [...] # 假设这里是从数据库加载的一系列旧版测试实例对象列表 new_requirement_text = "用户登录成功后应跳转至首页." similar_case = find_similar_tests(new_requirement_text, existing_tests) if similar_case is not None: print(f"发现类似测试:\n{similar_case.code}") else: print("未找到合适的模板.") ``` #### 分析边界条件和异常场景,增强测试覆盖范围 除了正常流程外,还需要特别关注程序可能遇到的各种极端情况以及错误输入的可能性。DeepSeek 可帮助识别潜在的风险点,并指导开发者设计更加严谨细致的验证方案。 ```python def analyze_edge_cases_and_exceptions(feature_description): """根据特性描述分析其边界条件及异常处理要求.""" edge_conditions = [ ("空字符串", ""), ("极大整数", int(9e18)), ("-1作为负索引", -1), ... ] exceptions_to_handle = ["TypeError", "ValueError"] analysis_result = { 'edge': [], 'exception': [] } for cond_name, value in edge_conditions: try: eval(f"{feature_description}(value)") # 这里仅作示意用途;实际应用时需谨慎评估安性风险. continue except Exception as e: if type(e).__name__ in exceptions_to_handle: analysis_result['exception'].append((cond_name, str(type(e)))) return analysis_result ``` #### 构建用例数据库以便后续维护和支持团队协作 最后,将所有生成或优化后的测试用例存储在一个易于访问的位置对于长期维护至关重要。考虑到不同成员之间可能存在交流障碍,建立统一标准格式化的仓库不仅有助于内部沟通协调,也方便外部审计人员审查工作成果。 ```sql CREATE TABLE IF NOT EXISTS TestCases ( id INTEGER PRIMARY KEY AUTOINCREMENT, title TEXT UNIQUE NOT NULL, content BLOB NOT NULL, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP, updated_at TIMESTAMP ON UPDATE CURRENT_TIMESTAMP ); ``` ```python class TestCaseRepository(): def __init__(self, db_connection_string="sqlite:///testcases.db"): self.conn = sqlite3.connect(db_connection_string) cursor = self.conn.cursor() create_table_query = """ CREATE TABLE IF NOT EXISTS TestCases( id INTEGER PRIMARY KEY AUTOINCREMENT, title TEXT UNIQUE NOT NULL, content BLOB NOT NULL, created_at DATETIME DEFAULT (datetime('now', 'localtime')), updated_at DATETIME ON CONFLICT REPLACE ); """ cursor.execute(create_table_query) self.conn.commit() def add(self, title, code_content): insert_stmt = '''INSERT INTO TestCases(title,content) VALUES (?,?)''' with closing(sqlite3.connect(":memory:")) as conn: cur = conn.cursor() cur.execute(insert_stmt,(title,pickle.dumps(code_content))) conn.commit() def get_all_titles(self): select_stmt = '''SELECT DISTINCT title FROM TestCases ORDER BY created_at DESC;''' results = pd.read_sql(select_stmt,self.conn)['title'] return list(results.values) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值