python数据分析学习路线规划

Python是一种面向对象、直译式计算机程序设计语言,由Guido van Rossum于1989年底发明。由于他简单、易学、免费开源、可移植性、可扩展性等特点,Python又被称之为胶水语言。下图为主要程序语言近年来的流行趋势,Python受欢迎程度扶摇直上。


图片来源用Python玩转数据

由于Python拥有非常丰富的库,使其在数据分析领域也有广泛的应用。由于Python本身有十分广泛的应用,本期Python数据分析路线图主要从数据分析从业人员的角度讲述Python数据分析路线图。整个路线图计划分成16周,120天左右。主要学习内容包括四大部分:

1)Python工作环境及基础语法知识了解(包括正则表达式相关知识学习);

2)数据采集相关知识(python爬虫相关知识);

3)数据分析学习;

4)数据可视化学习。


PYTHON学习路径计划图

Python工作环境及基础语法知识了解

对于Python基础语法学习部分,学习周期大概为4周,需要的相关资源在网络上都能找到免费的资源,而且质量都不错。相关中文资源如下:

1.python工作集成环境包

Python(x,y):下载地址

Pycharm:下载地址

2.python数据分析相关库(Pandas/ Numpy/

Scipy/ Matplotlib)

如果安装了上面集成工作包,则下面的包不需要重新安装了。关于包的安装方法在学习资源图书中都有介绍,通常安装库采用pip方法,也可以用pip list查询系统安装了哪些库。

3.学习资源

图书:1)Python基础教程(第2版)[电子版图书自行百度]

2)深入浅出Head First python(中文版)[电子版图书自行百度]

在线教程:1)廖雪峰的python教程

2)正则式学习

视频教程:1)慕课网python入门

2)慕课网python进阶

3)正则式学习视频

数据采集学习

对于数据采集部分的学习主要是通过python爬虫的学习了解基本的外部数据采集情况,当然也可以借助别人写好的规则库直接完成某些数据的采集。这部分内容的学习周期大概也为四周,需要的相关资源在网络上都能找到免费的资源,而且质量都不错。相关中文资源如下:

爬虫学习在线教程:

1.Python爬虫入门一之综述

2.Python爬虫入门二之爬虫基础了解

3.Python爬虫入门三之Urllib库的基本使用

4.Python爬虫入门四之Urllib库的高级用法

5.Python爬虫入门五之URLError异常处理

6.Python爬虫入门六之Cookie的使用

7.Python爬虫入门七之正则表达式

8.Python爬虫实战一之爬取糗事百科段子

9.Python爬虫实战二之爬取百度贴吧帖子

10.Python爬虫实战三之计算大学本学期绩点

11.Python爬虫实战四之抓取淘宝MM照片

12.Python爬虫进阶一之爬虫框架Scrapy安装配置

视频教程:Python简单爬虫开发

数据分析

Python数据分析的学习主要是对相关库的使用,比如数据整理需要用到numpy和pandas库,数据描述与分析分析则主要用到pandas库,从某种程度上讲,利用python进行数据分析的学习过程就是对库的学习过程。由于有了前面2部分内容的学习基础,本部分内容的建议学习练习时间也为4周,相关免费学习资源如下:

图书:利用python进行数据分析[电子版图书自行百度]

视频:用python玩转数据[视频为cousera认证课程,全程中文]

数据可视化

Python数据可视化学习的过程就是学习matplotlib库的过程,matplotlib库包含有丰富的数据可视化资源,地图、3D等等都有涉及,如果有前面3部分的学习经验的话,这部分内容在4周内也能解决。相关中文学习资源如下:

图书:Python数据可视化编程实战[电子版图书自行百度]

在线教程:

1.利用Python绘图和可视化(1)

2.利用Python绘图和可视化(2)

对于Python的学***: 1. 入门阶段:首先,您可以从学习Python的基础知识开始。了解Python的语法、数据类型、循环和条件语句等基本概念。 2. 编程基础:掌握Python的核心概念和编程基础,包括函数、模块、文件操作等。学习如何使用Python解决简单的编程问题。 3. 面向对象编程:深入了解面向对象编程(OOP)的概念和用法。学习类、对象、继承、多态等概念,逐渐应用OOP思想解决问题。 4. 数据结构与算法:学习常见的数据结构如列表、字典、集合和元组,以及算法的基本思想和常见算法的实现。这将帮助您更高效地解决问题。 5. Web开发:了解Python在Web开发中的应用。学习常见的Web框架如Django或Flask,掌握前端技术如HTML、CSS和JavaScript,以及数据库操作。 6. 数据分析与科学计算:学习使用Python进行数据分析和科学计算。掌握数据处理库如NumPy和Pandas,数据可视化库如Matplotlib和Seaborn。 7. 机器学习与人工智能:深入学习机器学习和人工智能的基本概念和算法。了解常见的机器学习库如Scikit-learn和TensorFlow,掌握模型训练和预测的实践。 8. 应用开发:根据个人兴趣和需求,选择特定领域的应用开发方向,如游戏开发、网络爬虫、自然语言处理等。 在学习过程中,建议通过阅读官方文档、参考书籍、在线教程和实践项目来巩固所学知识。同时,参与编程社区,与其他开发者交流和分享经验,可以提升自己的技术水平。记得多动手实践,不断练习才能提高编程能力。祝您学习愉快!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值