区间最值的问题——————RMQ问题

RMQ问题

    RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在[i,j]里的最小(大)值,也就是说,RMQ问题是指求区间最值的问题RMQ主要思想是分治,倍增与动态规划。

求解RMQ问题分为两步,预处理阶段和求解(查询)阶段

第一步: 先进行预处理,用动态规划完成

设A[i]为要求最值的数列,F[i,j]用来表示从第i个数开始连续2^j个数的最大值。(DP的状态)

A={2,4,3,7,6,1,9,5}

F[1,0] 是指从第一个数开始连续 2^0次方个数,即就是2这个数。F(1,1)=max(2,4) ; F[i,0]=A[i] (DP的初值);接下来就该状态转移方程了。我们把F[i,j] 平均分成两段(因为f[i,j]一定是偶数个数字),从 i 到i + 2 ^ (j - 1) - 1为一段,i + 2 ^ (j - 1)到i + 2 ^ j - 1为一段(长度都为2 ^ (j - 1))。用上例说明,当i=1,j=3时就是2,4,3,7 和 6,1,9,5这两段。F[i,j] 就是这两段各自最大值中的最大值。于是我们得到了状态转移方程F[i, j]=max(F[i,j-1], F[i + 2^(j-1),j-1])。

RMQ算法不过是从首部先相邻的元素取最值,然后再扩大在这些最值里面。

代码如下:

void RMQ(int n)    //n是士兵人数
{
	for(int i=1;i<=n;i++)
	{
		minn[i][0]=a[i]; //a[i] 为第i个士兵杀得人数
		maxx[i][0]=a[i];
	}
	for(int j=1;(1<<j)<=n;j++)                
	for(int i=1;i+(1<<j)-1<=n;i++)
	{
		minn[i][j]=min(minn[i][j-1],minn[i+(1<<(j-1))][j-1]);     //minn[][],保存的是在区间内的最小值
		maxx[i][j]=max(maxx[i][j-1],maxx[i+(1<<(j-1))][j-1]);  //保存最大值
	}
}

注意:外层是j,内层所i,不能交换

因为状态转移方程的含义是:先更新所有长度为F[i,0]即1个元素,然后通过2个1个元素的最值,获得所有长度为F[i,1]即2个元素的最值,然后再通过2个2个元素的最值,获得所有长度为F[i,2]即4个元素的最值,以此类推更新所有长度的最值。

而如果是i在外,j在内的话,我们更新的顺序就是F[1,0],F[1,1],F[1,2],F[1,3],表示更新从1开始1个元素,2个元素,4个元素,8个元素(A[0],A[1],....A[7])的最值,这里F[1,3] = max(max(A[0],A[1],A[2],A[3]),max(A[4],A[5],A[6],A[7]))的值,但是我们根本没有计算max(A[0],A[1],A[2],A[3])和max(A[4],A[5],A[6],A[7]),所以这样的方法肯定是错误的。


为了避免这样的错误,一定要好好理解这个状态转移方程所代表的含义。

第二步查询

假如我们需要查询的区间为(i,j),那么我们需要找到覆盖这个闭区间(左边界取i,右边界取j)的最小幂(可以重复,比如查询5,6,7,8,9,我们可以查询5678和6789)。

因为这个区间的长度为j - i + 1,所以我们可以取k=log2( j - i + 1),则有:RMQ(A, i, j)=max{F[i , k], F[ j - 2 ^ k + 1, k]}。

举例说明,要求区间[2,8]的最大值,k = log2(8 - 2 + 1)= 2,即求max(F[2, 2],F[8 - 2 ^ 2 + 1, 2]) = max(F[2, 2],F[5, 2]);

代码如下:

int rmp(int l,int r)
{
	int k=0;
	while((1<<(k+1))<=r-l+1) k++;   //求出最小幂 K,其中(r-l+1)是区间长度,左移运算符是2的(k+1)次方,k+1的目的是,求出的k次方为区间长度的一半	
	int k1=min(minn[l][k],minn[r+1-(1<<k)][k]); //区间的最小值 
	int k2=max(maxx[l][k],maxx[r+1-(1<<k)][k]);//区间的最大值 
	return k2-k1;  
}
或者求最小幂改成  
  int k = (int)(log(r-l+1)/log(2)); 

例题  请访问  这里 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值