39. 组合总和
题目链接:39. 组合总和
文章讲解:代码随想录|39. 组合总和
思路
可以重复选择,就先对candidates进行排序,然后每次startIndex可以从当前元素开始,这样就可以出现2, 2, 3且不会出现2, 3, 2这样的结果
组合问题中,什么时候需要startIndex呢?
如果是一个集合来求组合的话,就需要startIndex,例如:77.组合,216.组合总和III
如果是多个集合取组合,各个集合之间相互不影响,那么就不用startIndex,例如:17.电话号码的字母组合
代码
class Solution {
public:
vector<int> path;
vector<vector<int>> result;
int sum = 0;
void backtracking(vector<int>& candidates, int target, int startIndex){
if(sum > target) return;
if(sum == target) {
result.push_back(path);
return;
}
for(int i = startIndex; i < candidates.size(); i++){
sum += candidates[i];
path.push_back(candidates[i]);
backtracking(candidates, target, i);
sum -= candidates[i];
path.pop_back();
}
}
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
sort(candidates.begin(), candidates.end());
backtracking(candidates, target, 0);
return result;
}
};
剪枝优化
如果已经知道下一层的sum会大于target,就没有必要进入下一层递归了,那么可以在for循环的搜索范围上做做文章
for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++)
40.组合总和II
题目链接:40.组合总和II
文章讲解:代码随想录|40.组合总和II
视频讲解:40.组合总和II
思路
要去重的是同一树层上的“使用过”,同一树枝上的都是一个组合里的元素,不用去重
使用used[i]记录是否使用过该节点
for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
// used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
// used[i - 1] == false,说明同一树层candidates[i - 1]使用过
// 要对同一树层使用过的元素进行跳过
if (i > 0 && candidates[i] == candidates[i - 1] && used[i - 1] == false) {
continue;
}
sum += candidates[i];
path.push_back(candidates[i]);
used[i] = true;
backtracking(candidates, target, sum, i + 1, used); // 和39.组合总和的区别1:这里是i+1,每个数字在每个组合中只能使用一次
used[i] = false;
sum -= candidates[i];
path.pop_back();
}
我在图中将used的变化用橘黄色标注上,可以看出在candidates[i] == candidates[i - 1]相同的情况下:
used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
used[i - 1] == false,说明同一树层candidates[i - 1]使用过
为什么 used[i - 1] == false 就是同一树层呢,因为同一树层,used[i - 1] == false 才能表示,当前取的 candidates[i] 是从 candidates[i - 1] 回溯而来的。
代码
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& candidates, int target, int sum, int startIndex, vector<bool>& used) {
if (sum == target) {
result.push_back(path);
return;
}
for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
// used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
// used[i - 1] == false,说明同一树层candidates[i - 1]使用过
// 要对同一树层使用过的元素进行跳过
if (i > 0 && candidates[i] == candidates[i - 1] && used[i - 1] == false) {
continue;
}
sum += candidates[i];
path.push_back(candidates[i]);
used[i] = true;
backtracking(candidates, target, sum, i + 1, used); // 和39.组合总和的区别1,这里是i+1,每个数字在每个组合中只能使用一次
used[i] = false;
sum -= candidates[i];
path.pop_back();
}
}
public:
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
vector<bool> used(candidates.size(), false);
path.clear();
result.clear();
// 首先把给candidates排序,让其相同的元素都挨在一起。
sort(candidates.begin(), candidates.end());
backtracking(candidates, target, 0, 0, used);
return result;
}
};
131.分割回文串
题目链接:131.分割回文串
文章讲解:代码随想录|131.分割回文串
视频讲解:131.分割回文串
思路
for循环暴力写很难写,所以要用另外一种暴力的方式:回溯法
对于字符串:abcbaa
用树型结构来看,for循环横向遍历:
a|bcbaa ab|cbaa abc|baa abcb|aa abcba|a abcbaa|
如果左半部分是回文序列,那么将左半部分放入path后,继续for循环右半部分(递归,也就是纵向遍历)
如果左半部分不是回文序列,则直接继续向右遍历(如:ab|cbaa→abc|baa),右半部分也不进行递归了:
代码
class Solution {
private:
vector<vector<string>> result;
vector<string> path; // 放已经回文的子串
void backtracking (const string& s, int startIndex) {
// 如果起始位置已经大于s的大小,说明已经找到了一组分割方案了
if (startIndex >= s.size()) {
result.push_back(path);
return;
}
for (int i = startIndex; i < s.size(); i++) {
if (isPalindrome(s, startIndex, i)) { // 是回文子串
// 获取[startIndex,i]在s中的子串
string str = s.substr(startIndex, i - startIndex + 1);
path.push_back(str);
} else { // 不是回文,跳过
continue;
}
backtracking(s, i + 1); // 寻找i+1为起始位置的子串
path.pop_back(); // 回溯过程,弹出本次已经添加的子串
}
}
bool isPalindrome(const string& s, int start, int end) {
for (int i = start, j = end; i < j; i++, j--) {
if (s[i] != s[j]) {
return false;
}
}
return true;
}
public:
vector<vector<string>> partition(string s) {
result.clear();
path.clear();
backtracking(s, 0);
return result;
}
};