免费也能用得爽!即梦AI与通义万相、可灵AI的全面对比!

原文:免费也能用得爽!即梦AI与通义万相、可灵AI的全面对比!

不同的 AI 工具在功能、速度和用户体验上各有千秋。我最近在做古诗的视频,所以用得比较多 AI 工具,以下是对国内可灵、通义万相和即梦 AI 的全面对比,帮助你选择最适合的 AI 工具。 

图片

可灵AI(不充值无法用)

  • 功能限制:不充值的话,很多功能都无法使用,这在一定程度上限制了创作体验的自由
  • 文生图速度:生成速度尚可,但生成高清图需要开通会员,且有水印,影响最终效果
  • 图生视频速度:速度较慢,不充值时需要 40 分钟以上,即使充值后也需要 5 分钟,且需要排队等待,不太适合需要快速生成视频的用户
  • 用户体验:整体体验一般,功能受限和等待时间较长是主要问题

 

💡

可灵的文生图功能 

https://klingai.kuaishou.com/ 

图片

图生视频比较慢,要 40 分钟以上,充会员后也还需要 5 分钟,真的是蛮慢的。 

图片

通义万相(免费-勉强用用)

  • 免费使用:虽然可以免费使用,但体验较为勉强
  • 文生图速度:速度时快时慢,有时会卡在 97%,需要重新刷新页面才能完成,影响创作效率
  • 图生视频速度:10 分钟左右,速度尚可
  • 用户体验:操作体验较差,页面跳转频繁,信息需要重新填写,给用户带来不便

 

💡

通义万相的文生图 

https://tongyi.aliyun.com/wanxiang/creation 

图片

可以直接根据放大后图片生成视频,但是跳到新页面。 

图片

图生视频的速度 10 几分钟,只能免费用用。 

图片

操作体验比较差,各种跳转,然后信息都要重新填过。 

 

即梦AI(免费-推荐使用)

  • 免费且功能丰富:即使不充值也能使用许多功能,非常适合普通用户
  • 文生图速度:速度非常快,网页查看的图都是无水印的,生成高清图也是免费的,让你的创作更加高效
  • 图生视频速度:速度同样很快,质量不错,满足了用户对视频生成的需求
  • 用户体验:文生图和图生视频都在同一个页面,操作体验非常友好,无需频繁跳转和重复填写信息
  • 特色功能:特别喜欢“消除笔”功能,可以轻松清除局部不喜欢的图像,让创作更加灵活

 

💡

即梦的文生图 

https://jimeng.jianying.com/ai-tool/image/generate 

图片

我比较喜欢的功能是“消除笔”这个功能,可以把局部不喜欢的图清掉。 

图片

图生视频的速度也是很快,而且质量不错,我的古诗视频基本都是即梦AI生成的。文生图和图生视频都在同一个页面,批量操作体验比较友好。 

总结

综合来看,【即梦 AI】在免费使用的情况下,功能丰富且生成速度快,网站操作体验也非常友好,非常适合普通用户。相比之下,【通义万相】虽然免费,但在操作体验和生成速度上都不如即梦 AI。而【可灵 AI】在不充值的情况下功能受限,即使充值后图生视频的速度也需要等待,不太适合追求高效创作的用户。 

 

因此,如果你是普通用户,希望在不充值的情况下也能享受到高效、便捷的创作体验,【即梦 AI】 无疑是最佳选择。 

其它精彩:

结合 AI 编写 Playwright 自动化发布视频代码,效率翻倍!

​​​​​​视频编辑教程:用 AI 和剪映打造古诗视频

AI助力古诗视频制作全流程化教程

### 蓝耘通义的合作及其生态关系 蓝耘通义 2.1 的合作在 AIGC(人工智能生成内容)领域具有重要意义。这种合作关系不仅促进了技术创新,还构建了一个开放、共享的产业生态系统。 #### 合作的核心目标 蓝耘通义 2.1 的合作旨在推动 AIGC 技术的应用和发展。通过提供强大的技术支持和算力保障,双方能够更好地服务于多个行业,如影视制作、广告设计以及教育等领域[^2]。这些行业的实际需求被转化为技术驱动的产品和服务,从而提升了效率并创造了新的商业机会。 #### 生态系统的建设 为了进一步扩大影响力,蓝耘通义 2.1 还致力于打造一个繁荣的产业生态系统。该系统通过多种方式吸引开发者、企业和研究机构参其中,例如举办技术竞赛和开展开源项目合作等举措[^1]。这种方式使得参者能够在资源共享的基础上实现经验交流和技术进步,最终共同推进整个 AIGC 行业向前发展。 #### 开发者支持本地化部署 除了宏观层面的战略规划外,在具体实施过程中也注重给予开发者足够的活性和支持。比如针对希望将通义 2.1 应用于本地场景的需求方,官方提供了详尽的指导文档来帮助完成从环境配置到实战生成全流程操作;同时借助于像阿里云魔搭这样的平台,则可以让更多人便捷地访问最新版本模型及关资源[^3]。 ```python # 示例代码展示如何加载预训练模型 from transformers import AutoModel, AutoTokenizer model_name = "damo-vilab/visual_gpt" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) text_input = tokenizer("An example input", return_tensors="pt") output = model(**text_input) print(output.last_hidden_state.shape) ``` 上述 Python 示例演示了如何使用 Hugging Face Transformers 加载名为 `visual_gpt` 的视觉大模型,这正是得益于类似通义所提供的开放接口才得以轻松实现跨平台调用功能。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值