from argparse import ArgumentParser
import os
from mmdet.apis import inference_detector, init_detector #, show_result_pyplotimport cv2
defshow_result_pyplot(model, img, result, score_thr=0.3, fig_size=(15,10)):"""Visualize the detection results on the image.
Args:
model (nn.Module): The loaded detector.
img (str or np.ndarray): Image filename or loaded image.
result (tuple[list] or list): The detection result, can be either
(bbox, segm) or just bbox.
score_thr (float): The threshold to visualize the bboxes and masks.
fig_size (tuple): Figure size of the pyplot figure.
"""ifhasattr(model,'module'):
model = model.module
img = model.show_result(img, result, score_thr=score_thr, show=False)return img
# plt.figure(figsize=fig_size)# plt.imshow(mmcv.bgr2rgb(img))# plt.show()defmain():# config文件
config_file ='./configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'# 训练好的模型
checkpoint_file ='./work_dirs/faster_rcnn_r50_fpn_1x_coco/epoch_200.pth'# model = init_detector(config_file, checkpoint_file)
model = init_detector(config_file, checkpoint_file, device='cuda:0')# 图片路径
img_dir ='./data/coco/val2017/'# 检测后存放图片路径
out_dir ='./faster_rcnn_result/'ifnot os.path.exists(out_dir):
os.mkdir(out_dir)# 测试集的图片名称txt
test_path ='./img.txt'
fp =open(test_path,'r')
test_list = fp.readlines()
count =0
imgs =[]for test in test_list:
test = test.replace('\n','')
test = test.split('.')[0]# 如果test里面内容的名字是xxx.jpg,需要这行语句,是因为生成的图片会出现.jpg.jpg,否则不需要。
name = img_dir + test +'.jpg'
count +=1print('model is processing the {}/{} images.'.format(count,len(test_list)))# result = inference_detector(model, name)# model = init_detector(config_file, checkpoint_file, device='cuda:0')
result = inference_detector(model, name)
img = show_result_pyplot(model, name, result, score_thr=0.8)
cv2.imwrite("{}/{}.jpg".format(out_dir, test), img)if __name__ =='__main__':
main()