C++ 红黑树

目录

0.前言

1.红黑树概念

2.红黑树性质

3.红黑树节点定义

节点属性详解

4.红黑树结构

4.1带头节点的红黑树结构

4.2不带头节点的红黑树结构

5.红黑树插入节点操作

5.1 按照二叉搜索树的规则插入新节点

5.2 检测新节点插入后,红黑树的性质是否遭到破坏

5.2.1 情况一: cur为红,p为红,g为黑,u存在且为红

5.2.2 情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑(需要单旋)

5.2.3 情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑(需要双旋)

6.红黑树删除节点操作

6.1 按照二叉搜索树的规则删除节点

6.2. 检测删除节点后,红黑树的性质是否遭到破坏,并进行修复

7.红黑树的性能

7.1红黑树的复杂度分析

7.2与 AVL 树的比较

8.红黑树的迭代器设计

8.1迭代器结构

8.2前向迭代(operator++)

8.3后向迭代(operator--)

9.红黑树的模拟实现代码

10.基于红黑树的map模拟实现

11.结语


(图像由AI生成) 

0.前言

在之前的文章中,我们介绍了 C++ 标准库中的 mapset 容器的使用,以及 AVL 树的实现。尽管 AVL 树在平衡性方面表现优异,但在插入和删除操作频繁的应用中,红黑树(Red-Black Tree)由于其较少的旋转操作次数,往往能提供更优的性能。本篇博客将详细介绍红黑树的概念、性质、节点定义、结构、插入与删除操作、性能、迭代器设计,并展示基于红黑树的模拟实现代码及其在 map 容器中的应用。

1.红黑树概念

红黑树(Red-Black Tree)是一种自平衡二叉搜索树,在每个节点上增加一个存储位表示节点的颜色,可以是红色(Red)或黑色(Black)。红黑树通过对从根到叶子的路径上各个节点的着色方式进行限制,确保没有任何一条路径比其他路径长出两倍,从而实现近似的平衡。

红黑树最早由 Rudolf Bayer 于 1972 年提出,最初被称为对称二叉 B 树(Symmetric Binary B-trees)。后来,Leonidas J. Guibas 和 Robert Sedgewick 对其进行了改进和推广,正式提出了红黑树的概念。红黑树的设计思想是通过简单的规则和操作,确保树在插入和删除操作后保持平衡,从而提供高效的查找性能。

红黑树广泛应用于各种实际场景中,其性质使得它在实现高效数据结构时具有很大优势。例如:

  • STL 容器:C++ 标准模板库(STL)中的 mapset 容器通常基于红黑树实现,以保证快速的插入、删除和查找操作。

  • 数据库索引:许多数据库系统使用红黑树来实现索引结构,以提高数据检索的效率。

  • 内核调度:一些操作系统内核使用红黑树来管理进程调度,以确保系统能够高效地处理任务。

2.红黑树性质

(图片来源:知乎@王大帅 特此鸣谢) 

红黑树具有以下五个重要性质,这些性质保证了红黑树的平衡性和高效性:

  1. 每个节点不是红色就是黑色

    • 红黑树的每个节点都有一个颜色属性,这个颜色要么是红色,要么是黑色。通过颜色属性的限制,红黑树能够在结构上保持平衡。
  2. 根节点是黑色的

    • 红黑树的根节点始终是黑色的。这一性质确保了树的平衡性从根节点开始,并且为树的其他平衡规则提供了基础。
  3. 如果一个节点是红色的,则它的两个孩子节点是黑色的

    • 这一性质避免了两个连续的红色节点出现在从根到叶子的路径上。通过限制红色节点的排列方式,红黑树能够防止路径长度的不平衡增长。
  4. 对于每个节点,从该节点到其所有后代叶节点的简单路径上,均包含相同数目的黑色节点

    • 这一性质也称为黑色平衡性(black-height)。它保证了从任一节点到其叶节点的路径长度相似,从而使红黑树接近平衡。这意味着在插入或删除节点时,红黑树可以通过重新着色和旋转操作来恢复平衡,而不需要像 AVL 树那样频繁调整。
  5. 每个叶子节点都是黑色的(此处的叶子节点指的是空节点)

    • 红黑树中的叶子节点实际上是树中的空节点(NIL 节点),这些节点也被视为黑色。即使树中没有显式存储这些 NIL 节点,理解它们的存在对于分析红黑树的平衡性是至关重要的。

3.红黑树节点定义

在红黑树中,每个节点不仅存储数据,还包含指向其子节点和父节点的指针,以及节点的颜色属性。下面是红黑树节点的定义代码:

enum Color { RED, BLACK };

template<class T>
struct RBTreeNode
{
    T _data;  // 存储的数据
    RBTreeNode<T>* _left;  // 指向左子节点的指针
    RBTreeNode<T>* _right;  // 指向右子节点的指针
    RBTreeNode<T>* _parent;  // 指向父节点的指针
    Color _color;  // 节点的颜色

    // 构造函数,初始化节点的数据和指针,默认颜色为红色
    RBTreeNode(const T& data)
        : _data(data)
        , _left(nullptr)
        , _right(nullptr)
        , _parent(nullptr)
        , _color(RED)
    {}
};

节点属性详解

  1. _data:

    • 存储节点的数据。这个数据可以是任何类型,由模板参数 T 决定。
  2. _left:

    • 指向左子节点的指针。如果左子节点不存在,则该指针为 nullptr
  3. _right:

    • 指向右子节点的指针。如果右子节点不存在,则该指针为 nullptr
  4. _parent:

    • 指向父节点的指针。这在红黑树的插入和删除操作中非常重要,因为这些操作需要通过父节点来进行旋转和重新着色。
  5. _color:

    • 节点的颜色属性,可以是红色(RED)或黑色(BLACK)。颜色属性在保持红黑树的平衡性中起到关键作用。
    • 在构造函数中,节点的颜色被默认设置为红色(RED)。这是因为插入新节点时,默认情况下设置为红色更易于保持树的平衡,并通过后续的旋转和重新着色操作来调整树的结构。

4.红黑树结构

红黑树可以带有头节点(header)或者不带头节点。在带头节点的红黑树结构中,头节点提供了便利的指针,可以快速访问树的最小节点、最大节点以及根节点。这种设计在实现中有助于简化边界情况的处理。

4.1带头节点的红黑树结构

带头节点的红黑树使用一个特殊的头节点(header),它的颜色通常设为红色,并且其指针指向树中的特殊节点。具体来说,头节点的指针结构如下:

  • header->parent 指向树的根节点。
  • header->left 指向树中最小的节点(leftmost)。
  • header->right 指向树中最大的节点(rightmost)。

4.2不带头节点的红黑树结构

不带头节点的红黑树则不使用额外的头节点,直接通过根节点进行操作。在这种结构中,树的边界处理和遍历操作相对复杂一些,因为没有头节点来存储额外的指针信息。

为定义方便起见,后文中红黑树结构采用无头结点方式。

5.红黑树插入节点操作

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入操作可以分为两个步骤:

  1. 按照二叉搜索树的规则插入新节点
  2. 检测新节点插入后,红黑树的性质是否遭到破坏,并进行修复

5.1 按照二叉搜索树的规则插入新节点

首先,我们按照二叉搜索树的规则找到新节点的插入位置,并将其插入到树中。插入的新节点默认颜色为红色。以下是具体的实现代码:

pair<Iterator, bool> Insert(const T& data) {
    if (_root == nullptr) {
        _root = new Node(data);
        _root->_color = BLACK;  // 根节点必须是黑色
        return make_pair(Iterator(_root, _root), true);
    }

    KeyOfT kot;  // 获取键值
    Node* parent = nullptr;
    Node* cur = _root;
    while (cur) {
        if (kot(cur->_data) == kot(data)) {
            return make_pair(Iterator(cur, _root), false);  // 如果数据已经存在,直接返回
        }
        parent = cur;
        if (kot(cur->_data) > kot(data)) {
            cur = cur->_left;
        } else {
            cur = cur->_right;
        }
    }

    cur = new Node(data);
    Node* newNode = cur;
    if (KeyOfT()(data) < KeyOfT()(parent->_data)) {
        parent->_left = cur;
    } else {
        parent->_right = cur;
    }
    cur->_parent = parent;

    // 检测并修复红黑树性质,伪代码
    FixInsert(cur);

    return make_pair(Iterator(newNode, _root), true);
}

5.2 检测新节点插入后,红黑树的性质是否遭到破坏

在插入节点后,可能会破坏红黑树的性质,需要进行修复。红黑树的性质有五条:

  1. 每个节点不是红色就是黑色。
  2. 根节点是黑色的。
  3. 如果一个节点是红色的,则它的两个孩子节点是黑色的。
  4. 对于每个节点,从该节点到其所有后代叶节点的简单路径上,均包含相同数目的黑色节点。
  5. 每个叶子节点都是黑色的(此处的叶子节点指的是空节点)。

为了修复红黑树的性质,我们需要考虑以下几种情况:

  • 情况 1:新节点的父节点是黑色的。这种情况下,插入操作不会破坏红黑树的任何性质,因此不需要进行任何操作。

  • 情况 2:新节点的父节点是红色的。由于红黑树的性质 3 被破坏(两个连续的红色节点),我们需要进行修复操作。具体分为以下几种子情况:

    • 情况 2.1:新节点的叔叔节点(父节点的兄弟节点)是红色的。这种情况下,父节点和叔叔节点都变为黑色,祖父节点变为红色,然后将当前节点指向祖父节点,继续检测祖父节点。

    • 情况 2.2:新节点的叔叔节点是黑色的,且新节点是父节点的右孩子。此时,我们需要进行左旋操作,将新节点变成父节点,然后进行情况 2.3 的处理。

    • 情况 2.3:新节点的叔叔节点是黑色的,且新节点是父节点的左孩子。这种情况下,我们进行右旋操作,将父节点变成新节点,调整颜色后结束修复。

我们不妨约定cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点。

5.2.1 情况一: cur为红,p为红,g为黑,u存在且为红

在这种情况下,当前节点cur的父节点p和叔叔节点u都是红色,祖父节点g是黑色。这种情况破坏了红黑树性质3(红节点的子节点必须是黑色)。解决方式如下:

  1. pu改为黑色。
  2. g改为红色。
  3. 将当前节点cur移动到g,继续向上调整。
void FixInsert(Node* node) {
    Node* parent = nullptr;
    Node* grandFather = nullptr;

    // 当前节点不在根节点且其父节点为红色时,需要调整
    while (node != _root && node->_parent->_color == RED) {
        parent = node->_parent;
        grandFather = parent->_parent;

        if (parent == grandFather->_left) {
            Node* uncle = grandFather->_right;

            if (uncle && uncle->_color == RED) {
                // 情况 1: 叔叔是红色
                parent->_color = BLACK;
                uncle->_color = BLACK;
                grandFather->_color = RED;
                node = grandFather; // 将当前节点上移到祖父节点继续调整
            } else {
                // 处理情况 2 和 3
            }
        } else {
            Node* uncle = grandFather->_left;

            if (uncle && uncle->_color == RED) {
                // 情况 1: 叔叔是红色
                parent->_color = BLACK;
                uncle->_color = BLACK;
                grandFather->_color = RED;
                node = grandFather; // 将当前节点上移到祖父节点继续调整
            } else {
                // 处理情况 2 和 3
            }
        }
    }

    _root->_color = BLACK;  // 根节点始终是黑色
}

5.2.2 情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑(需要单旋)

在这种情况下,当前节点cur的父节点p是红色,叔叔节点u是黑色或不存在。根据curp的相对位置,需要进行单旋操作。

  • 如果curp的右子节点,pg的左子节点,需要进行左旋。
  • 如果curp的左子节点,pg的右子节点,需要进行右旋。
void FixInsert(Node* node) {
    Node* parent = nullptr;
    Node* grandFather = nullptr;

    // 当前节点不在根节点且其父节点为红色时,需要调整
    while (node != _root && node->_parent->_color == RED) {
        parent = node->_parent;
        grandFather = parent->_parent;

        if (parent == grandFather->_left) {
            Node* uncle = grandFather->_right;

            if (uncle && uncle->_color == RED) {
                parent->_color = BLACK;
                uncle->_color = BLACK;
                grandFather->_color = RED;
                node = grandFather; // 将当前节点上移到祖父节点继续调整
            } else {
                if (node == parent->_right) {
                    // 情况 2: 叔叔是黑色且当前节点是右子节点,需要左旋
                    RotateL(parent);
                    node = parent;
                    parent = node->_parent;
                }
                // 单旋后调整颜色
                RotateR(grandFather);
                swap(parent->_color, grandFather->_color);
                node = parent;
            }
        } else {
            Node* uncle = grandFather->_left;

            if (uncle && uncle->_color == RED) {
                parent->_color = BLACK;
                uncle->_color = BLACK;
                grandFather->_color = RED;
                node = grandFather; // 将当前节点上移到祖父节点继续调整
            } else {
                if (node == parent->_left) {
                    // 情况 2: 叔叔是黑色且当前节点是左子节点,需要右旋
                    RotateR(parent);
                    node = parent;
                    parent = node->_parent;
                }
                // 单旋后调整颜色
                RotateL(grandFather);
                swap(parent->_color, grandFather->_color);
                node = parent;
            }
        }
    }

    _root->_color = BLACK;  // 根节点始终是黑色
}

5.2.3 情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑(需要双旋)

在这种情况下,当前节点cur的父节点p是红色,叔叔节点u是黑色或不存在。根据curp的相对位置,需要进行双旋操作。

  • 如果curp的左子节点,pg的左子节点,且curp的右子节点(需要右旋后左旋)。
  • 如果curp的右子节点,pg的右子节点,且curp的左子节点(需要左旋后右旋)。
void FixInsert(Node* node) {
    Node* parent = nullptr;
    Node* grandFather = nullptr;

    // 当前节点不在根节点且其父节点为红色时,需要调整
    while (node != _root && node->_parent->_color == RED) {
        parent = node->_parent;
        grandFather = parent->_parent;

        if (parent == grandFather->_left) {
            Node* uncle = grandFather->_right;

            if (uncle && uncle->_color == RED) {
                parent->_color = BLACK;
                uncle->_color = BLACK;
                grandFather->_color = RED;
                node = grandFather; // 将当前节点上移到祖父节点继续调整
            } else {
                if (node == parent->_right) {
                    // 情况 3: 叔叔是黑色且当前节点是右子节点,需要左旋后右旋
                    RotateL(parent);
                    node = parent;
                    parent = node->_parent;
                }
                // 双旋后调整颜色
                RotateR(grandFather);
                swap(parent->_color, grandFather->_color);
                node = parent;
            }
        } else {
            Node* uncle = grandFather->_left;

            if (uncle && uncle->_color == RED) {
                parent->_color = BLACK;
                uncle->_color = BLACK;
                grandFather->_color = RED;
                node = grandFather; // 将当前节点上移到祖父节点继续调整
            } else {
                if (node == parent->_left) {
                    // 情况 3: 叔叔是黑色且当前节点是左子节点,需要右旋后左旋
                    RotateR(parent);
                    node = parent;
                    parent = node->_parent;
                }
                // 双旋后调整颜色
                RotateL(grandFather);
                swap(parent->_color, grandFather->_color);
                node = parent;
            }
        }
    }

    _root->_color = BLACK;  // 根节点始终是黑色
}

6.红黑树删除节点操作

在红黑树中,删除节点操作分为两个部分:首先按照二叉搜索树的规则删除节点,然后通过调整(旋转和重新着色)来修复可能破坏的红黑树性质。

6.1 按照二叉搜索树的规则删除节点

删除节点时,首先找到要删除的节点,并进行删除操作。如果节点有两个子节点,需要找到后继节点替换被删除节点,并删除后继节点。

Node* Delete(Node* root, const T& data) {
    // 查找并删除节点,返回新根节点
    Node* z = FindNode(root, data);  // 找到要删除的节点
    if (!z) return root;  // 节点不存在,直接返回

    Node* y = z;
    Node* x;
    Color y_original_color = y->_color;

    if (z->_left == nullptr) {
        x = z->_right;
        Transplant(root, z, z->_right);
    } else if (z->_right == nullptr) {
        x = z->_left;
        Transplant(root, z, z->_left);
    } else {
        y = Minimum(z->_right);  // 找到后继节点
        y_original_color = y->_color;
        x = y->_right;
        if (y->_parent == z) {
            if (x) x->_parent = y;
        } else {
            Transplant(root, y, y->_right);
            y->_right = z->_right;
            y->_right->_parent = y;
        }
        Transplant(root, z, y);
        y->_left = z->_left;
        y->_left->_parent = y;
        y->_color = z->_color;
    }

    delete z;

    if (y_original_color == BLACK) {
        FixDelete(root, x);
    }

    return root;
}

6.2. 检测删除节点后,红黑树的性质是否遭到破坏,并进行修复

删除节点后,可能会破坏红黑树的性质,需要进行修复。常见的调整情况如下:

情况一:当前节点x是红色或其父节点是红色

  • 不需要做任何调整,因为删除一个红色节点不会破坏红黑树的性质。

情况二:当前节点x是黑色,其兄弟节点是红色

  • 将父节点变为红色,兄弟节点变为黑色,然后进行旋转,转为情况三或四进行处理。

情况三:当前节点x是黑色,其兄弟节点是黑色,兄弟节点的子节点都是黑色

  • 将兄弟节点变为红色,继续向上调整,直到根节点或调整完毕。

情况四:当前节点x是黑色,其兄弟节点是黑色,兄弟节点的一个子节点是红色

  • 根据兄弟节点子节点的位置,进行旋转和重新着色。

7.红黑树的性能

7.1红黑树的复杂度分析

红黑树是一种自平衡二叉搜索树,能够确保在最坏情况下的操作复杂度为O(logn),其中 n 是树中节点的数量。这种性能保证源于红黑树的平衡性质,使得树的高度始终保持在 O(logn) 范围内。以下是对红黑树主要操作的复杂度分析:

  1. 查找

    • 红黑树的查找操作与二叉搜索树类似,通过比较节点值从根节点逐层向下查找。由于红黑树的高度最多为 O(logn),因此查找操作的复杂度为O(logn)。
  2. 插入

    • 插入操作首先按照二叉搜索树的规则找到插入位置,复杂度为O(logn)。然后,通过重新着色和旋转来保持红黑树的平衡。每次插入操作最多需要进行两次旋转,因此插入操作的复杂度为 O(logn)。
  3. 删除

    • 删除操作也首先按照二叉搜索树的规则找到要删除的节点,复杂度为 O(logn)。删除后,通过重新着色和旋转来保持红黑树的平衡。每次删除操作最多需要进行三次旋转,因此删除操作的复杂度为O(logn)。

7.2与 AVL 树的比较

红黑树与 AVL 树都是自平衡二叉搜索树,但它们在具体实现和性能特性上有所不同。以下是两者的比较:

  1. 平衡性

    • AVL 树:高度平衡,确保每个节点的左右子树高度差最多为 1。这意味着 AVL 树通常比红黑树更加平衡。
    • 红黑树:通过颜色和旋转规则保持平衡,但允许更松散的平衡条件。这使得红黑树的高度可能稍高于 AVL 树,但仍然在 O(logn) 范围内。
  2. 插入和删除操作

    • AVL 树:由于严格的平衡条件,插入和删除操作可能需要进行较多的旋转。插入操作的平均旋转次数为 1.44 次,删除操作的平均旋转次数为 2.44 次。
    • 红黑树:由于较为宽松的平衡条件,插入和删除操作所需的旋转次数通常较少。插入操作最多需要进行两次旋转,删除操作最多需要进行三次旋转。
  3. 查找性能

    • AVL 树:由于更严格的平衡条件,AVL 树的查找性能在理论上优于红黑树。然而,在实际应用中,这种性能差异通常并不明显,尤其是在数据规模较大时。
  4. 适用场景

    • AVL 树:适用于查找操作较为频繁、插入和删除操作较少的场景,如数据库索引和只读数据结构。
    • 红黑树:适用于插入和删除操作较为频繁的场景,如操作系统的任务调度和动态集合操作。红黑树在这些场景中由于旋转次数较少,能够提供更好的整体性能。

8.红黑树的迭代器设计

红黑树的迭代器设计需要支持遍历树中的所有节点,并能够执行前向和后向遍历操作。迭代器在红黑树中的作用类似于指针,能够指向树中的节点,并提供便捷的节点访问和遍历功能。

8.1迭代器结构

红黑树的迭代器通过模板参数支持泛型,并包含当前节点和树根节点的指针。下面是迭代器的定义:

template<class T, class Ref, class Ptr>
struct RBTreeIterator
{
	typedef RBTreeNode<T> Node;
	typedef RBTreeIterator<T, Ref, Ptr> Self;

	Node* _node;  // 当前节点
	Node* _root;  // 树根节点

	RBTreeIterator(Node* node, Node* root)
		: _node(node)
		, _root(root)
	{}

	Self& operator++();//待实现
	Self& operator--();//待实现

	Ref operator*()
	{
		return _node->_data;
	}

	Ptr operator->()
	{
		return &_node->_data;
	}

	bool operator!= (const Self& s)
	{
		return _node != s._node;
	}

	bool operator== (const Self& s)
	{
		return _node == s._node;
	}
};

8.2前向迭代(operator++

前向迭代操作用于遍历树的下一个节点。根据当前节点的位置,前向迭代的实现分为两种情况:

  1. 当前节点有右子树:如果当前节点有右子树,则下一个节点是右子树的最左节点。

  2. 当前节点没有右子树:如果当前节点没有右子树,则沿着父节点向上移动,直到找到一个节点,该节点是其父节点的左子节点。这个父节点就是下一个节点。

Self& operator++()
{
	if (_node->_right)
	{
		// 当前节点有右子树,找到右子树的最左节点
		Node* leftMost = _node->_right;
		while (leftMost->_left)
		{
			leftMost = leftMost->_left;
		}
		_node = leftMost;
	}
	else
	{
		// 当前节点没有右子树,向上找第一个是左子节点的祖先
		Node* cur = _node;
		Node* parent = cur->_parent;
		while (parent && cur == parent->_right)
		{
			cur = parent;
			parent = cur->_parent;
		}
		_node = parent;
	}

	return *this;
}

8.3后向迭代(operator--

后向迭代操作用于遍历树的前一个节点。根据当前节点的位置,后向迭代的实现分为三种情况:

  1. 当前节点是 end():如果当前节点是 end()(空节点),则下一个节点是整棵树的最右节点。

  2. 当前节点有左子树:如果当前节点有左子树,则下一个节点是左子树的最右节点。

  3. 当前节点没有左子树:如果当前节点没有左子树,则沿着父节点向上移动,直到找到一个节点,该节点是其父节点的右子节点。这个父节点就是下一个节点。

Self& operator--()
{
	if (_node == nullptr) // end()
	{
		// 当前节点是end(),找到最右节点
		Node* rightMost = _root;
		while (rightMost && rightMost->_right)
		{
			rightMost = rightMost->_right;
		}
		_node = rightMost;
	}
	else if (_node->_left)
	{
		// 当前节点有左子树,找到左子树的最右节点
		Node* rightMost = _node->_left;
		while (rightMost->_right)
		{
			rightMost = rightMost->_right;
		}
		_node = rightMost;
	}
	else
	{
		// 当前节点没有左子树,向上找第一个是右子节点的祖先
		Node* cur = _node;
		Node* parent = cur->_parent;
		while (parent && cur == parent->_left)
		{
			cur = parent;
			parent = cur->_parent;
		}
		_node = parent;
	}

	return *this;
}

9.红黑树的模拟实现代码

#pragma once
#include<iostream>
#include<algorithm>
#include<cassert>
#include<vector>
using namespace std;

enum Color { RED, BLACK };

template<class T>
struct RBTreeNode
{
	T _data;
	RBTreeNode<T>* _left;
	RBTreeNode<T>* _right;
	RBTreeNode<T>* _parent;
	Color _color;

	RBTreeNode(const T& data)
		:_data(data)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _color(RED)
	{}
};

template<class T, class Ref, class Ptr>
struct RBTreeIterator
{
	typedef RBTreeNode<T> Node;
	typedef RBTreeIterator<T, Ref, Ptr> Self;

	Node* _node;
	Node* _root;

	RBTreeIterator(Node* node, Node* root)
		:_node(node)
		, _root(root)
	{}

	Self& operator++()
	{
		if (_node->_right)
		{
			// 右不为空,右子树最左节点就是中序第一个
			Node* leftMost = _node->_right;
			while (leftMost->_left)
			{
				leftMost = leftMost->_left;
			}

			_node = leftMost;
		}
		else
		{
			// 孩子是父亲左的那个祖先
			Node* cur = _node;
			Node* parent = cur->_parent;
			while (parent && cur == parent->_right)
			{
				cur = parent;
				parent = cur->_parent;
			}

			_node = parent;
		}

		return *this;
	}

	Self& operator--()
	{
		if (_node == nullptr) // end()
		{
			// --end(),特殊处理,走到中序最后一个节点,整棵树的最右节点
			Node* rightMost = _root;
			while (rightMost && rightMost->_right)
			{
				rightMost = rightMost->_right;
			}

			_node = rightMost;
		}
		else if (_node->_left)
		{
			// 左子树不为空,中序左子树最后一个
			Node* rightMost = _node->_left;
			while (rightMost->_right)
			{
				rightMost = rightMost->_right;
			}

			_node = rightMost;
		}
		else
		{
			// 孩子是父亲右的那个祖先
			Node* cur = _node;
			Node* parent = cur->_parent;
			while (parent && cur == parent->_left)
			{
				cur = parent;
				parent = cur->_parent;
			}

			_node = parent;

		}

		return *this;
	}

	Ref operator*()
	{
		return _node->_data;
	}

	Ptr operator->()
	{
		return &_node->_data;
	}

	bool operator!= (const Self& s)
	{
		return _node != s._node;
	}

	bool operator== (const Self& s)
	{
		return _node == s._node;
	}
};

template<class K, class T,class KeyOfT>
class RBTree
{
	typedef RBTreeNode<T> Node;
private:
	Node* _root = nullptr;
public:
	typedef RBTreeIterator<T, T&, T*> Iterator;
	typedef RBTreeIterator<T, const T&, const T*> ConstIterator;

	Iterator Begin()
	{
		Node* cur = _root;
		while (cur && cur->_left)
		{
			cur = cur->_left;
		}

		return Iterator(cur, _root);
	}

	Iterator End()
	{
		return Iterator(nullptr, _root);
	}

	ConstIterator Begin() const
	{
		Node* cur = _root;
		while (cur && cur->_left)
		{
			cur = cur->_left;
		}

		return ConstIterator(cur, _root);
	}

	ConstIterator End() const
	{
		return ConstIterator(nullptr, _root);
	}

	RBTree() = default;
	RBTree(const RBTree& t)
	{
		_root = _Copy(t._root);
	}

	RBTree& operator=(RBTree t)
	{
		swap(_root, t._root);//交换根节点
		return *this;
	}

	~RBTree()
	{
		_Destroy(_root);
		_root = nullptr;
	}

	pair<Iterator, bool> Insert(const T& data)
	{
		if (_root == nullptr)
		{
			_root = new Node(data);
			_root->_color = BLACK;
			return make_pair(Iterator(_root, _root), true);
		}

		KeyOfT kot;//获取键值
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (kot(cur->_data) == kot(data))
			{
				return make_pair(Iterator(cur, _root), false);
			}
			parent = cur;
			if (kot(cur->_data) > kot(data))
			{
				cur = cur->_left;
			}
			else //kot(cur->_data) > kot(data)
			{
				cur = cur->_right;
			}
		}

		cur = new Node(data);
		Node* newNode = cur;
		if (KeyOfT()(data) < KeyOfT()(parent->_data))
		{
			parent->_left = cur;
		}
		else
		{
			parent->_right = cur;
		}
		cur->_parent = parent;

		while (parent && parent->_color == RED)
		{
			Node* grandFather = parent->_parent;
			//   g
			//  / \
			// p   u 
			if (parent == grandFather->_left)
			{
				Node* uncle = grandFather->_right;
				if (uncle && uncle->_color == RED)
				{
					// 叔叔是红色,变色再继续向上调整
					parent->_color = BLACK;
					uncle->_color = BLACK;
					grandFather->_color = RED;

					cur = grandFather;
					parent = cur->_parent;
				}
				else
				{
					// 叔叔是黑色/叔叔为空,旋转+变色
					if (cur == parent->_left)
					{
						//    g
						//   / \
						//  p   u
						// /
						//c
						RotateR(grandFather);
						parent->_color = BLACK;
						grandFather->_color = RED;
					}
					else
					{
						//    g
						//   / \
						//  p   u
						//   \
						//    c
						RotateL(parent);
						RotateR(grandFather);
						cur->_color = BLACK;
						grandFather->_color = RED;
					}
					break;
				}
			}
			else
			{
				//   g
				//  / \
				// u   p
				Node* uncle = grandFather->_left;
				// 叔叔是红色,变色再继续向上调整
				if (uncle && uncle->_color == RED)
				{
					parent->_color = BLACK;
					uncle->_color = BLACK;
					grandFather->_color = RED;

					cur = grandFather;
					parent = cur->_parent;
				}
				else // 叔叔是黑色/叔叔为空,旋转+变色
				{
					//	  g
					//	 / \
					//	u   p
					//	     \
					//	      c
					if (cur == parent->_right)
					{
						RotateL(grandFather);
						parent->_color = BLACK;
						grandFather->_color = RED;
					}
					else
					{
						//	  g
						//	 / \
						//	u   p
						//	   /
						//	  c
						RotateR(parent);
						//	  g
						//	 / \
						//	u   c
						//	     \
						//	      p
						RotateL(grandFather);
						cur->_color = BLACK;
						grandFather->_color = RED;
					}
					break;
				}
			}
		}
		_root->_color = BLACK;
		return make_pair(Iterator(newNode, _root), true);
	}
	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}
	int Size()
	{
		return _Size(_root);
	}
	int Height()
	{
		return _Height(_root);
	}
private:
	Node* _Copy(Node* root)
	{
		if (root == nullptr)
			return nullptr;
		Node* newRoot = new Node(root->_data);
		newRoot->_color = root->_color;
		newRoot->_left = _Copy(root->_left);
		newRoot->_right = _Copy(root->_right);
		if (newRoot->_left)
			newRoot->_left->_parent = newRoot;
		if (newRoot->_right)
			newRoot->_right->_parent = newRoot;
		return newRoot;
	}

	void _Destroy(Node* root)
	{
		if (root == nullptr)
			return;
		_Destroy(root->_left);
		_Destroy(root->_right);
		delete root;
	}
	void _InOrder(Node* root)
	{
		if (root == nullptr)
			return;

		_InOrder(root->_left);
		//cout << root->_kv.first << " " << root->_kv.second << endl;
		cout<<root->_data<<" ";
		_InOrder(root->_right);
	}
	int _Size(Node* root)
	{
		if (root == nullptr)
			return 0;
		return 1 + _Size(root->_left) + _Size(root->_right);
	}
	int _Height(Node* root)
	{
		if (root == nullptr)
			return 0;
		return 1 + max(_Height(root->_left), _Height(root->_right));
	}
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		Node* parentParent = parent->_parent;

		subR->_left = parent;
		parent->_parent = subR;

		if (parentParent == nullptr)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (parent == parentParent->_left)
			{
				parentParent->_left = subR;
			}
			else
			{
				parentParent->_right = subR;
			}

			subR->_parent = parentParent;
		}
	}
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		Node* parentParent = parent->_parent;

		subL->_right = parent;
		parent->_parent = subL;

		if (parentParent == nullptr)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (parent == parentParent->_left)
			{
				parentParent->_left = subL;
			}
			else
			{
				parentParent->_right = subL;
			}

			subL->_parent = parentParent;
		}
	}
};

10.基于红黑树的map模拟实现

以下是基于红黑树实现的 map 类的代码,其中复用了红黑树的实现。这里的 map 类使用红黑树来存储键值对,并提供插入、删除和查找操作。

template <class Key, class Value>
struct KeyValuePair {
    Key first;
    Value second;

    KeyValuePair(const Key& k = Key(), const Value& v = Value())
        : first(k), second(v) {}

    bool operator<(const KeyValuePair& kv) const {
        return first < kv.first;
    }

    bool operator>(const KeyValuePair& kv) const {
        return first > kv.first;
    }

    bool operator==(const KeyValuePair& kv) const {
        return first == kv.first;
    }
};

template<class Key, class Value, class KeyOfT = KeyValuePair<Key, Value>>
class Map {
private:
    RBTree<KeyValuePair<Key, Value>, KeyValuePair<Key, Value>&, KeyValuePair<Key, Value>*> _tree;

public:
    typedef typename RBTree<KeyValuePair<Key, Value>, KeyValuePair<Key, Value>&, KeyValuePair<Key, Value>*>::Iterator Iterator;

    Map() {}

    pair<Iterator, bool> Insert(const Key& key, const Value& value) {
        return _tree.Insert(KeyValuePair<Key, Value>(key, value));
    }

    bool Erase(const Key& key) {
        return _tree.Delete(KeyValuePair<Key, Value>(key));
    }

    Iterator Find(const Key& key) {
        return _tree.Find(KeyValuePair<Key, Value>(key));
    }

    Value& operator[](const Key& key) {
        Iterator it = Find(key);
        if (it != _tree.End()) {
            return it->second;
        } else {
            auto result = Insert(key, Value());
            return result.first->second;
        }
    }

    Iterator Begin() {
        return _tree.Begin();
    }

    Iterator End() {
        return _tree.End();
    }
};

11.结语

红黑树作为一种高效的自平衡二叉查找树,在实际应用中得到了广泛使用。它通过重新着色和旋转操作保持树的平衡,保证了插入、删除和查找操作的时间复杂度为 O(log n)。与 AVL 树相比,红黑树在插入和删除操作中具有更高的效率,非常适合频繁更新的场景。希望通过本文的介绍,大家能更好地理解和应用红黑树。

  • 18
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
抱歉,我是一名语言模型AI,无法为您提供演示实时代码功能。但是,我可以向您解释红黑树的基本原理和操作。红黑树是一种自平衡二叉搜索树,它的每个节点都有一个颜色属性,红色或黑色,具有以下特性: 1. 根节点为黑色。 2. 所有叶子节点(NIL节点)为黑色。 3. 如果一个节点为红色,则它的两个子节点必须都为黑色。 4. 从任意一个节点到其每个叶子节点的所有路径都包含相同数量的黑色节点。 红黑树的基本操作包括插入、删除和查找。插入和删除操作会破坏红黑树的平衡性,需要通过旋转和重新着色来修复平衡。查找操作与二叉搜索树相同,具有O(log n)的时间复杂度。 以下是红黑树的插入操作的伪代码: 1. 新节点插入到红黑树中,颜色为红色。 2. 如果新节点的父节点为黑色,则不需要做任何操作,树仍然平衡。 3. 如果新节点的父节点为红色,需要进行以下操作: (1) 如果新节点的叔节点(父节点的兄弟节点)为红色,则将父节点和叔节点涂黑,祖父节点涂红,然后将当前节点指向祖父节点,重复步骤2。 (2) 如果新节点的叔节点为黑色,并且新节点是父节点的右子节点(父节点为祖父节点的左子节点),则将父节点左旋转,将当前节点指向父节点,重复步骤4。 (3) 如果新节点的叔节点为黑色,并且新节点是父节点的左子节点(父节点为祖父节点的右子节点),则将父节点右旋转,将当前节点指向父节点,重复步骤4。 4. 将父节点涂黑,祖父节点涂红,然后进行以下操作: (1) 如果当前节点是父节点的左子节点,将祖父节点右旋转。 (2) 如果当前节点是父节点的右子节点,将祖父节点左旋转。 以上是红黑树的基本操作,希望能够帮助您理解红黑树的原理。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值