机器学习004_朴素贝叶斯

1.1 基于朴素贝叶斯决策理论的分类方法

优点:在数据较少的情况下仍然有效,可以处理多类别问题

缺点:对于输入数据的准备方式较为敏感

适用数据类型:标称型数据

“朴素”——整个形式化过程只做最原始、最简单的假设。

朴素贝叶斯是贝叶斯决策论的一部分,选择具有最高概率的决策。

Thomas Bayes 通过引入先验知识和逻辑推理来处理不确定命题。

概率、条件概率、贝叶斯准则

P(x,y | c)表示在环境条件c下,点(x,y)属于其类的概率是多少

贝叶斯准则:P(c | x)= P(x | c)P(c)/ P(x)即交换条件概率中的条件与结果

P(c | x,y)表示给定某个由x,y表示的数据点,那么该数据点来自类别c的概率是多少?

1.2 使用朴素贝叶斯进行文档分类

通过观察文档中出现的词,并把每个词的出现或者不出现作为一个特征,这样得到的特征数目就会跟词汇表中的词目一样多。

朴素贝叶斯的一般过程:

(1)收集数据:使用RSS源

(2)准备数据:需要数值型或者布尔型数据

(3)分析数据:有大量特征时,绘制特征作用不大,这里使用直方图

(4)训练算法:计算不同的独立特征的条件概率

(5)测试算法:计算错误率

(6)使用算法:一个常见的朴素贝叶斯应用是文档分类,可以在任意的分类场景中使用朴素贝叶斯分类,不一定非要是文本。

朴素贝叶斯分类器通常有两种实现方式:一种是基于贝努利模型实现,一种基于多项式模型实现,我们采用前一种,即假设每个特征同样重要,不考虑词在文档中出现的次数,只考虑出不出现,也可以认为假设词是等权重的。

比如要用来判断留言板的留言是否得当,可能不需要看完所有的1000个单词,而只需要看10~20个特征就足以做出判断。

1.3 使用Python进行文本分类

特征定义:来自文本的词条(token)一个词条是字符的任意组合

准备数据:从文本中构建词向量

def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]    #1 is abusive, 0 not
    return postingList,classVec

def createVocabList(dataSet):
    vocabSet = set([])  #create empty set
    for document in dataSet:
        vocabSet = vocabSet | set(document) #union of the two sets
    return list(vocabSet)

def setOfWords2Vec(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] = 1
        else: print ("the word: %s is not in my Vocabulary!" % word)
    return returnVec

第三个函数setOfWords2Vec(vocabList,inputSet)输入参数为词汇表及某个文档,输出是文档向量,向量的每一元素为1或0,分别表示词汇表中的单词在输入文档中是否出现。

训练算法:从词向量计算概率

准备数据中介绍了如何将一组单词转换为一组数据,然后我们要使用这些数字计算概率,现在已经知道一个词是否出现在一篇文档中,也知道该文档所属的类别。

伪代码:

计算每个类别中的文档数目

对每篇训练文档:

        对每个类别:

                 如果词条出现在文档中——增加该词条的计数值

                 增加所有词条的计数值

对每个类别:

         对每个词条:

                  将该词条的数目除以总词条数目得到条件概率

返回每个类别的条件概率

朴素贝叶斯分类器训练函数

def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)
    numWords = len(trainMatrix[0])
    pAbusive = sum(trainCategory)/float(numTrainDocs)
    p0Num = ones(numWords); p1Num = ones(numWords)      #change to ones() 
    p0Denom = 2.0; p1Denom = 2.0                        #change to 2.0
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = log(p1Num/p1Denom)          #change to log()
    p0Vect = log(p0Num/p0Denom)          #change to log()
    return p0Vect,p1Vect,pAbusive

一旦某个词语(侮辱性或者正常词语)在某一文档中出现,则该词对应的个数(p1Num或者p0Num)就加1,而且在所有的文档中,该文档的总词数也相应加1,对于两个类别都要进行同样的处理。

测试算法:根据现实情况修改分类器

存在的问题及解决方案:

(1)利用贝叶斯分类器对文档进行分类时,要计算许多个概率的乘积以获得文档属于某个类别的概率,如果其中一个概率值为0,那么最后的乘积也会为0,所以我们在初始化的时候,将所有词的出现数初始化为1,并将分母初始化为2。

(2)下溢出,太多很小的数相乘,程序会下溢出,或者得不到正确的答案。通过求对数可以避免下溢出或者浮点数舍入导致的错误,同时,采用自然对数进行处理不会有任何损失。

def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    p1 = sum(vec2Classify * p1Vec) + log(pClass1)    #element-wise mult
    p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
    if p1 > p0:
        return 1
    else: 
        return 0

def testingNB():
    listOPosts,listClasses = loadDataSet()
    myVocabList = createVocabList(listOPosts)
    trainMat=[]
    for postinDoc in listOPosts:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
    testEntry = ['love', 'my', 'dalmation']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)
    testEntry = ['stupid', 'garbage']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)

准备数据:文档词袋模型

我们将每个词的出现与否作为一个特征,可以描述为词集模型。

如果一个词在文档中出现不止一次,这可能意味着包含该词是否出现在文档中所不能表达的某种信息,这种方法被称为词袋模型。

在词袋中,每个单词可以出现多次;在词集中,每个词只能出现一次。

朴素贝叶斯词袋模型:每当遇到一个单词时,它会增加词向量中的对应值,而不只是将对应的数值设为1。

def bagOfWords2VecMN(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] += 1
    return returnVec

1.4 示例:使用朴素贝叶斯过滤垃圾邮件

(1)收集数据:提供文本文件

(2)准备数据:将文本文件解析成词条向量

(3)分析数据:检查词条确保解析的正确性

(4)训练算法:使用我们之前建立的trainNB0()函数

(5)测试算法:使用classifyNB()并且构建一个新的测试函数来计算文档集的错误率

(6)使用算法:构建一个完整的程序对一组文档进行分类,将错分的文档输出到屏幕上

准备数据:切分文本

从文档中构建自己的词列表。

使用正则表达式来切分句子,其中分隔符是除单词、数字外的任意字符串。

将空字符去掉,只返回长度大于0的字符串。

测试算法:使用朴素贝叶斯进行交叉验证

文件解析及完整的垃圾邮件测试函数

def textParse(bigString):    #input is big string, #output is word list
    import re
    listOfTokens = re.split(r'\W*', bigString)
    return [tok.lower() for tok in listOfTokens if len(tok) > 2] 
    
def spamTest():
    docList=[]; classList = []; fullText =[]
    for i in range(1,26):
        wordList = textParse(open('email/spam/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(open('email/ham/%d.txt' % i).read())
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = createVocabList(docList)#create vocabulary
    trainingSet = range(50); testSet=[]           #create test set
    for i in range(10):
        randIndex = int(random.uniform(0,len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])  
    trainMat=[]; trainClasses = []
    for docIndex in trainingSet:#train the classifier (get probs) trainNB0
        trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
    errorCount = 0
    for docIndex in testSet:        #classify the remaining items
        wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
        if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
            errorCount += 1
            print ("classification error",docList[docIndex])
    print ('the error rate is: ',float(errorCount)/len(testSet))
    #return vocabList,fullText

注意:

问题:UnicodeDecodeError: 'gbk' codec can't decode byte 0xae in position 199: illegal multibyte sequence

解决办法:打开email\ham\23.txt,找到SciFinance?,把?替换成空格即可。

问题:TypeError: 'range' object doesn't support item deletion

解决办法:trainingSet = range(50) 改为 trainingSet = list(range(50))

第一个函数textParse()接受一个大字符串并将其解析为字符串列表。

第二个函数spamTest()对贝叶斯垃圾邮件分类器进行自动化处理。

导入文件夹spam和ham,这里对应的文件是进行打标签的,通过ClassList.append(1/0),将这些数据解析为词列表。

然后构建测试集与训练集。选出的数字所对应的文档添加到测试集,同时也将其从训练集中剔除。

即为k-折交叉验证(留存交叉验证)

接下来的for循环遍历训练集所有文档,对每封邮件基于词汇表并使用setOfWords2Vec()函数来构建词向量。这些词在traindNB0()函数中用于计算分类所需的概率。

然后遍历测试集,对其中每封邮件进行分类。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值