机器学习实战——线性模型

本文介绍了线性模型的基本形式和线性回归的概念,包括模型系数和最小二乘法求解。讨论了线性回归的正则化,特别是L1(Lasso)和L2(岭回归)正则化。在sklearn库中,重点讲解了LinearRegression类的使用,包括fit_intercept和normalize等参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 线性模型概述

1.1 基本形式

假设 x = ( x 1 , x 2 , . . . , x n ) \boldsymbol x=(x_1,x_2,...,x_n) x=(x1,x2,...,xn) 其中 x i x_i xi x \boldsymbol x x 在第 i i i 属性上的取值,则线性模型可以表示成如下形式:

f ( x ) = w 1 x 1 + w 2 x 2 + . . . + w n x n f(\boldsymbol x)=w_1x_1+w_2x_2+...+w_nx_n f(x)=w1x1+w

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值