【机器学习】第三章线性模型练习题及答案

一. 单选题(共21题,63分)

1.【单选题】以下哪组变量之间存在线性回归关系?

A. 正三角形的边长与周长

B. 学生的性别与他的成绩

C. 正方形的边长与面积

D. 儿子的身高与父亲的身高

正确答案: A

2.【单选题】下列关于线性回归分析中的残差(Residuals)说法正确的是?

A. 以上说法都不对

B. 残差均值总是大于零

C. 残差均值总是小于零

D. 残差均值总是等于零

正确答案: D

3.【单选题】构建一个最简单的线性回归模型需要几个系数(只有一个特征)?

A. 1

B. 2

C. 3

D. 4

正确答案: B

4.【单选题】向量x=[1,2,3,4,-9,0]的L1范数是多少?

A. 1

B. 6

C. 19

D. 111

正确答案: C

5.【单选题】回归问题和分类问题的区别是?

A. 回归问题与分类问题在输入属性值上要求不同

B. 回归问题输出值是连续的,分类问题输出值是离散的

C. 回归问题输出值是离散的,分类问题输出值是连续的

D. 回归问题有标签,分类问题没有

正确答案: B

6.【单选题】以下说法错误的是?

A. 正则项的目的是为了避免模型过拟合

B. 最小二乘法不需要选择学习率

C. 残差是预测值与真实值之间的差值

D. 损失函数越小,模型训练得一定越好

正确答案: D

7.【单选题】哪些算法不需要数据归一化?

### 关于机器学习线性回归模型的期末考试题目 #### 题目一:理论理解 1. **定义与原理** 解释什么是线性回归?描述其基本假设条件以及如何通过最小二乘法求解最优参数[^1]。 2. **损失函数** 描述线性回归使用的损失函数形式及其优化目标是什么? 3. **正则化方法** 岭回归和Lasso回归是如何改进标准线性回归的?两者之间有什么区别?分别适用于哪些情况下的建模需求[^4]? #### 题目二:实践应用 1. **数据预处理** 给定一个包含多个特征的数据集,在准备用于训练线性回归模型之前,需要执行哪些主要步骤来清理并转换这些原始数据?具体说明每一步骤的作用及其实现方式。 2. **模型构建与评估** 使用Python中的`scikit-learn`库创建一个简单的线性回归模型。编写一段完整的代码片段展示如何加载数据、划分训练/测试集合、实例化模型对象、拟合模型以及最后评价模型的表现(提示:可考虑采用交叉验证技术提高评分可靠性)。 ```python from sklearn.model_selection import train_test_split, cross_val_score from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error import numpy as np # 假设X为特征矩阵,y为目标变量向量 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = LinearRegression() scores = cross_val_score(model, X_train, y_train, cv=5) print(f'Cross-validation scores: {scores}') print(f'Mean CV score: {np.mean(scores)}') model.fit(X_train, y_train) predictions = model.predict(X_test) mse = mean_squared_error(y_test, predictions) print(f'Test MSE: {mse}') ``` 3. **超参数调优** 如何调整线性回归模型的相关超参数以改善预测效果?请列举至少两种常用的方法,并简要介绍它们的工作机制。 #### 题目三:扩展思考 1. **非线性关系处理** 当面对具有复杂非线性结构的数据时,单纯依靠传统意义上的线性回归可能会遇到困难。给出一种解决方案使得能够有效捕捉这种类型的模式变化[^2]。 2. **与其他算法比较** 将线性回归的结果同其他几种常见的监督学习算法(如决策树、支持向量机等)进行对比分析。讨论各自的优势劣势所在,并指出在线性不可分的情况下应采取何种策略来进行更好的分类或回归任务解决。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值