AlexNet 笔记

论文《ImageNet Classification with Deep Convolutional Neural Networks》 笔记。

摘要

训练了一个大型深度卷积神经网络来将ImageNet LSVRC-2010竞赛的120万高分辨率的图像分到1000不同的类别中。神经网络有6000万参数和650,000个神经元,包含5个卷积层(某些卷积层后面带有池化层)和3个全连接层,最后是一个1000维的softmax。为了减少全连接层的过拟合,我们采用了一个最近开发的名为dropout的正则化方法,结果证明是非常有效的。

1 引言

我们的网络包含许多新的不寻常的特性,这些特性提高了神经网络的性能并减少了训练时间,详见第三节。即使使用了120万标注的训练样本,我们的网络尺寸仍然使过拟合成为一个明显的问题,因此我们使用了一些有效的技术来防止过拟合,详见第四节。我们最终的网络包含5个卷积层和3个全连接层,深度似乎是非常重要的:我们发现移除任何卷积层(每个卷积层包含的参数不超过模型参数的1%)都会导致更差的性能。

2 数据集

ImageNet包含各种分辨率的图像,而我们的系统要求不变的输入维度。因此,我们将图像进行下采样到固定的256×256分辨率。给定一个矩形图像,我们首先缩放图像短边长度为256然后从结果图像中裁剪中心的256×256大小的图像块除了在训练集上对像素减去平均活跃度外,我们不对图像做任何其它的预处理。因此我们在原始的RGB像素值(中心的)上训练我们的网络。

3 架构

它包含八个学习层–5个卷积层和3个全连接层。下面,我们将描述我们网络结构中的一些新奇的不寻常的特性。3.1-3.4小节按照我们对它们评估的重要性进行降序排序。

3.1 ReLU

将神经元输出f建模为输入x的函数的标准方式是用 f ( x ) = t a n h ( x ) f(x) = tanh(x) f(x)=tanh(x) f ( x ) = 1 ( 1 + e − x ) f(x) = {1 \over (1 + e^{−x}) } f(x)=(1+ex)1。考虑到梯度下降的训练时间,这些饱和的非线性比非饱和非线性 f ( x ) = m a x ( 0 , x ) f(x) = max(0,x) f(x)=max(0,x)更慢。我们将这种非线性神经元称为修正线性单元(ReLU,Rectified Linear Units)。采用ReLU的深度卷积神经网络训练时间比等价的tanh单元要快几倍。如图,对于一个特定的四层卷积网络,在CIFAR-10数据集上达到25%的训练误差所需要的迭代次数可以证实这一点。
误差和Epochs关系图
图1。
使用ReLU的四层卷积神经网络在CIFAR-10数据集上达到25%的训练误差比使用tanh神经元的等价网络(虚线)快六倍。

3.2 多GPU训练

网络结构
网络结构
图2
CNN架构图解,明确描述了两个GPU之间的责任。在图的顶部,一个GPU运行在部分层上,而在图的底部,另一个GPU运行在部分层上。GPU只在特定的层进行通信。网络的输入是150,528维,网络剩下层的神经元数目分别是253,440–186,624–64,896–64,896–43,264–4096–4096–1000(8层)。

3.3 Local Response Normalization(局部响应归一化)

ReLU具有让人满意的特性,它不需要通过输入归一化来防止饱和。如果至少一些训练样本对ReLU产生了正输入,那么那个神经元上将发生学习。然而,我们仍然发现接下来的局部响应归一化有助于泛化。 a x , y i a_{x,y}^i ax,yi 表示神经元激活,通过在(x,y)位置应用核i,然后应用ReLU非线性来计算,响应归一化激活 b x , y i b^i_{x,y} bx,yi通过下式给定:
b x , y i = a x , y i ( k + a ∗ ∑ j = m a x ( 0 , i − n / 2 ) m i n ( N − 1 , i + n / 2 ) ( a x , y i ) 2 ) β {b^i_{x,y} = { a^i_{x,y} \over (k + a * { \sum_{j=max(0, i - n/2)}^{min(N-1, i+n/2)} (a^i_{x, y})^2 } )^\beta } } bx,yi=(k+aj=max(0,in/2)min(N1,i+n/2)(ax,yi)2)βax,yi
求和运算在n个“毗邻的”核映射的同一位置上执行,N是本层的卷积核数目。核映射的顺序当然是任意的,在训练开始前确定。响应归一化的顺序实现了一种侧抑制形式,灵感来自于真实神经元中发现的类型,为使用不同核进行神经元输出计算的较大活动创造了竞争。常量k,n,α,β是超参数,它们的值通过验证集确定;我们设k=2,n=5,α=0.0001,β=0.75。我们在特定的层使用的ReLU非线性之后应用了这种归一化(请看3.5小节)。

3.4 Overlapping Pooling (重叠池化)

CNN中的池化层归纳了同一核映射上相邻组神经元的输出。习惯上,相邻池化单元归纳的区域是不重叠的(例如[17, 11, 4])。更确切的说,池化层可看作由池化单元网格组成,网格间距为s个像素,每个网格归纳池化单元中心位置z×z大小的邻居。如果设置s=z,我们会得到通常在CNN中采用的传统局部池化。如果设置s<z,我们会得到重叠池化。这就是我们网络中使用的方法,设置s=2,z=3。这个方案分别降低了top-1 0.4%,top-5 0.3%的错误率,与非重叠方案s=2,z=2相比,输出的维度是相等的。我们在训练过程中通常观察采用重叠池化的模型,发现它更难过拟合。

3.5 整体架构

现在我们准备描述我们的CNN的整体架构。如图2所示,我们的网络包含8个带权重的层;前5层是卷积层,剩下的3层是全连接层。最后一层全连接层的输出是1000维softmax的输入,softmax会产生1000类标签的分布。我们的网络最大化多项逻辑回归的目标,这等价于最大化预测分布下训练样本正确标签的对数概率的均值。
第2,4,5卷积层的核只与位于同一GPU上的前一层的核映射相连接(看图2)。第3卷积层的核与第2层的所有核映射相连。全连接层的神经元与前一层的所有神经元相连。第1,2卷积层之后是响应归一化层。3.4节描述的这种最大池化层在响应归一化层和第5卷积层之后。ReLU非线性应用在每个卷积层和全连接层的输出上。

第1卷积层使用96个核对224 × 224 × 3的输入图像进行滤波,核大小为11 × 11 × 3,步长是4个像素(核映射中相邻神经元感受野中心之间的距离)。第2卷积层使用用第1卷积层的输出(响应归一化和池化)作为输入,并使用256个核进行滤波,核大小为5 × 5 × 48。第3,4,5卷积层互相连接,中间没有接入池化层或归一化层。第3卷积层有384个核,核大小为3 × 3 × 256,与第2卷积层的输出(归一化的,池化的)相连。第4卷积层有384个核,核大小为3 × 3 × 192,第5卷积层有256个核,核大小为3 × 3 × 192。每个全连接层有4096个神经元。

4 Reducing Overfitting

我们的神经网络架构有6000万参数。

4.1 Data Augmentation (数据增强)

图像数据上最简单常用的用来减少过拟合的方法是使用标签保留变换(例如[25, 4, 5])来人工增大数据集。我们使用了两种独特的数据增强方式,这两种方式都可以从原始图像通过非常少的计算量产生变换的图像,因此变换图像不需要存储在硬盘上。在我们的实现中,变换图像通过CPU的Python代码生成,而此时GPU正在训练前一批图像。因此,实际上这些数据增强方案是计算免费的。
第一种数据增强方式包括产生图像变换和水平翻转。我们从256×256图像上通过随机提取224 × 224的图像块实现了这种方式,然后在这些提取的图像块上进行训练。这通过一个2048因子增大了我们的训练集,尽管最终的训练样本是高度相关的。没有这个方案,我们的网络会有大量的过拟合,这会迫使我们使用更小的网络。在测试时,网络会提取5个224 × 224的图像块(四个角上的图像块和中心的图像块)和它们的水平翻转(因此总共10个图像块)进行预测,然后对网络在10个图像块上的softmax层进行平均

第二种数据增强方式包括改变训练图像的RGB通道的强度。

4.2 Dropout

将许多不同模型的预测结合起来是降低测试误差[1, 3]的一个非常成功的方法,但对于需要花费几天来训练的大型神经网络来说,这似乎太昂贵了。然而,有一个非常有效的模型结合版本,它只花费两倍的训练成本。这种最近引入的技术,叫做dropout,它会以0.5的概率对每个隐层神经元的输出设为0。那些“失活的”的神经元不再进行前向传播并且不参与反向传播。因此每次输入时,神经网络会采样一个不同的架构,但所有架构共享权重。这个技术减少了复杂的神经元互适应,因为一个神经元不能依赖特定的其它神经元的存在。因此,神经元被强迫学习更鲁棒的特征,它在与许多不同的其它神经元的随机子集结合时是有用的。在测试时,我们使用所有的神经元但它们的输出乘以0.5,对指数级的许多失活网络的预测分布进行几何平均,这是一种合理的近似。

5 Details of learning

我们使用随机梯度下降来训练我们的模型,样本的batch size为128,动量为0.9,权重衰减为0.0005。我们发现少量的权重衰减对于模型的学习是重要的。换句话说,权重衰减不仅仅是一个正则项:它减少了模型的训练误差。权重w的更新规则是:
v i + 1 : = 0.9 ⋅ v i − 0.0005 ⋅ ϵ ⋅ w i − ϵ ⋅ ⟨ ∂ L ∂ w ∣ w i ⟩ D i v_{i+1} := 0.9 \cdot v_i - 0.0005 \cdot \epsilon \cdot w_i - \epsilon \cdot \langle {\partial L \over \partial w} |_{w_i} \rangle _{D_i} vi+1:=0.9vi0.0005ϵwiϵwLwiDi
w i + 1 : = w i + v i + 1 w_{i+1} := w_i + v_{i+1} wi+1:=wi+vi+1
i 是迭代索引,v是动量变量, ϵ \epsilon ϵ是学习率, ⟨ ∂ L ∂ w ∣ w i ⟩ D i \langle {\partial L \over \partial w} |_{w_i} \rangle _{D_i} wLwiDi是目标函数对w,在 w i w_i wi上的第i批微分 D i D_i Di的平均。

我们使用均值为0,标准差为0.01的高斯分布对每一层的权重进行初始化。我们在第2,4,5卷积层和全连接隐层将神经元偏置初始化为常量1。这个初始化通过为ReLU提供正输入加速了学习的早期阶段。我们在剩下的层将神经元偏置初始化为0。

我们对所有的层使用相等的学习率,这个是在整个训练过程中我们手动调整得到的。当验证误差在当前的学习率下停止提供时,我们遵循启发式的方法将学习率除以10。学习率初始化为0.01,在训练停止之前降低三次。我们在120万图像的训练数据集上训练神经网络大约90个循环,在两个NVIDIA GTX 580 3GB GPU上花费了五到六天。

6 Results

6.1 Qualitative Evaluations

探索网络可视化知识的另一种方式是思考最后的4096维隐藏层在图像上得到的特征激活。如果两幅图像生成的特征激活向量之间有较小的欧式距离,我们可以认为神经网络的更高层特征认为它们是相似的。注意在像素级别,检索到的训练图像与第一列的查询图像在L2上通常是不接近的。例如,检索的狗和大象似乎有很多姿态。我们在补充材料中对更多的测试图像呈现了这种结果。
通过两个4096维实值向量间的欧氏距离来计算相似性是效率低下的,但通过训练一个自动编码器将这些向量压缩为短二值编码可以使其变得高效。这应该会产生一种比将自动编码器应用到原始像素上[14]更好的图像检索方法,自动编码器应用到原始像素上的方法没有使用图像标签,因此会趋向于检索与要检索的图像具有相似边缘模式的图像,无论它们是否是语义上相似。

7 Discussion

我们的结果表明一个大型深度卷积神经网络在一个具有高度挑战性的数据集上使用纯有监督学习可以取得破纪录的结果。值得注意的是,如果移除一个卷积层,我们的网络性能会降低。例如,移除任何中间层都会引起网络损失大约2%的top-1性能。因此深度对于实现我们的结果非常重要。
为了简化我们的实验,我们没有使用任何无监督的预训练,尽管我们希望它会有所帮助,特别是在如果我们能获得足够的计算能力来显著增加网络的大小而标注的数据量没有对应增加的情况下。到目前为止,我们的结果已经提高了,因为我们的网络更大、训练时间更长,但为了匹配人类视觉系统的下颞线(视觉专业术语)我们仍然有许多数量级要达到。最后我们想在视频序列上使用非常大的深度卷积网络,视频序列的时序结构会提供非常有帮助的信息,这些信息在静态图像上是缺失的或远不那么明显。

相关文档:http://noahsnail.com/2017/07/04/2017-7-4-AlexNet论文翻译/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值