NN模型设置--反卷积层的参数设置

  将反卷积层的学习率设为0,upsample的方式就是默认的双线性插值,当然也可以设置学习率不为0,让反卷积层自己学习参数(听说:学习率不为0,能让网络的效果有略微提升)。
  转置卷积层的stride最好别设置为和kernal相等,最好小一些,比如1/2;
  如果遇到了上图的马赛克现象,就将反卷积层的weight_filler设为双线性插值;而不要设为高斯。例:

layer {
  name: ""deconv2_1""
  type: ""Deconvolution""
  bottom: ""conv2_d""
  top: ""deconv2_1""
  param {
    lr_mult: 0
  }
  convolution_param { 
    num_output: 32
    bias_term: false
    kernel_size: 4
    stride: 2
    weight_filler {      
    type: ""bilinear""
    }
#    weight_filler {      
#    type: ""gaussian""      
#    std: 0.01    
#    }
#    bias_filler { 
#    type: ""constant"" 
#    value: 0 
#    }
  }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值