最近在学习的过程中碰到一个之前很熟悉的知识点,现在却傻傻分不清,就是我们在看代码的时候经常会看到某个函数里面 F.log_softmax(y / temp, dim=1) ,比如这个dim=1
因此为了彻底记住,网上查了些资料,把自己的理解记录在这里。
0轴代表一个矩阵里竖着的那一个方向,1轴代表一个矩阵里横着的那一个方向。
举个栗子,如下所示
import numpy as np
a = np.array([[1,2],[3,4],[5,6]])
print(a)
输出结果如下:
[[1 2]
[3 4]
[5 6]]
这里我们分别测试下 a.shape[0] 和 a.shape[1]
3
2
如 a.shape[0]返回的行数3;如a.shape[1]返回是它的列数2
如果需要对该矩阵进行操作的话就代表对竖着的这一列进行操作,如np.max(a, axis=0),返回矩阵A每一列的最大值
大致总结下,0轴代表一个矩阵里竖着的那一个方向,1轴代表一个矩阵里横着的那一个方向