齐次方程组(超定方程组)的最小二乘解,及利用其拟合空间平面

理论

齐次方程组形如:Ax=0。在一些优化,拟合等问题中经常出现,我们常考虑方程多于未知数元数的情况------超定方程组。

首先对于平凡解x=0我们一般不感兴趣,一般我们会寻求方程组的非零解。

如果x是方程组的一个解,那么对于Vk\in R,kx也是齐次方程组的解,一个合理的假设是只求满足\left \| x \right \|=1的解。

假设A的维数是m×n,一般的m>n(超定),那么方程组存在精确解的条件是rank(A)<n------>即矩阵A列不满秩。当没有精确解的时候(rank(A) = n, A列满秩),我们通常求其最小二乘解,描述为:

求使||Ax||最小化并满足||x||=1的x

先介绍一个引理,即对于一个酉阵或半酉阵p(P^{^{T}}P = I)和一个向量x(向量维数等于P列数),有:

\left \| x \right \|_{2}=\sqrt{x^{T}x}=\sqrt{x^{T}(p^{T}p))x}=\left \| px \right \|_{2}

将A进行精简奇异值分解,令:

A=UDV^{^{T}}

其中U和V为半酉阵,分别满足

U^{T}U= I, VV^{T}=I

则:

\left \| Ax \right \|=\left \| UDV^{T}x \right \|=\left \| DV^{T}x \right \|

另,若令:

y=V^{T}x

则问题等效成求使||Dy||最小化并满足||y||=1的y

需要说明的是对于当前问题,A列满秩,则D是对角阵,V是酉阵(方阵)

在奇异值分解中D的对角线元素是递减排列的,那么只需去取=(0,0,......0,1),则;

\left \|Ax \right \|=\left \| Dy \right \|=\sigma _{n}\sigma _{n}是A最小的奇异值

此时:

x=Vy

即x为V矩阵的最后一列,在此题背景下x为A‘A的最小特征值对应的单位特征向量。

示例:利用空间点拟合空间平面

有平面上的n个点的坐标(x_{i},y_{i},z_{i}),拟合平面ax+by+cy+d=0

注:这里不用ax+by+cy+1=0的形式拟合,形成一个Ax=b的非齐次方程组,然后通过广义逆的方式求解,主要考虑到平面可能过原点等问题

有m个方程:

ax_{i}+by_{i}+cz_{i}+d=0

用矩阵的方式表示成Ax=0的形式为;

\begin{pmatrix} x_{1} &y_{1} &z_{1} &1 \\ x_{2} &y_{2} &z_{2} &1 \\ &... & & \\ x_{m} &y_{m} &z_{m} &1 \end{pmatrix} \begin{pmatrix} a\\ b\\ c\\ d \end{pmatrix}=0

通过上述方式可进行求解

matlab代码如下:

function n = get_plane(X)
%%
% X为平面上的点坐标,大小为n×3矩阵
% n为平面的四维向量表示

%%
[m,~] = size(X);
a1 = ones(m,1);
A = [X,a1];
[~,~,V] = svd(A,'econ');
n = V(:,4);

 

  • 6
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值