【纳什博弈、ADMM】基于纳什博弈和交替方向乘子法的多微网主体能源共享研究(Matlab代码实现)

 👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

基于纳什博弈和ADMM的多微网主体能源共享研究

1.1 纳什谈判的基本理论

1.2 基于ADMM的微电网群分布式能量管理策略

一、纳什博弈原理及其在能源共享中的应用

二、交替方向乘子法(ADMM)的核心思想与优势

三、纳什博弈与ADMM的协同设计

四、系统架构与关键技术

五、研究前沿与未来方向

六、结论

📚2 运行结果

2.1 上层

2.1.1 微电网1

 2.1.2 微电网2

2.1.3  微电网3

2.2  下层

🎉3 参考文献

🌈4 Matlab代码、数据、文章下载


💥1 概述

基于纳什博弈和ADMM的多微网主体能源共享研究

 微电网作为各类分布式新能源接入电力系统和聚合产消者的重要形式,研究表明,微网之间的点对点(peer to peer,P2P)能源交易,可以有效提高新能源的本地消纳率,降低微电网的用电成本,减少对公用电网的依赖,并降低碳排放[3-4]。关于分布式主体之间P2P电能交易的研究可分为两个方向,一是通过区块链技术来促成产消者之间的商业化电能交易[5-6]。另一类研究则是利用博弈论方法来最大化 P2P 电能交易的收益[7-9],本文研究即属于此类。多主体之间的能源交易博弈论方法可以分为两类:非合作博弈和合作博弈[10]。

在第一类中,总是根据产消者的能量剩余或不足将其分为对立的买方和卖方两类,往往通过

stackelberg 博弈以各自的个体成本最优为目标来相互竞争,实现基于纳什均衡的最小能源成本[11-13]。文献[11-12]中将多个社区微电网分为买方和卖方互相主从博弈;文献[13]则考虑综合能源系统中三方利益主体的 stackelberg 博弈优化方法。另一种基于竞价拍卖博弈[14-15]的方法,其优点是便于写入智能合约。非合作博弈中每个主体都被视为自私的且对立的,因而缺乏对整体利益的考虑。在第二类中,多主体 P2P 能源交易被建模为联盟博弈模型或者纳什谈判(nash bargaining,NB)模型。文献[16]基于联盟博弈优化方法,联盟内各成员间根据 Shapley 值分配联合收益。联盟博弈模型计算复杂度高,且只能保证稳定联盟内部的效益最大化,而不是全局效益最大化[16]。这一点上,纳什谈判模型克服了联盟博弈的局限性[17]。本文优化方法属于纳什谈判的研究领域。

1.1 纳什谈判的基本理论

本文研究的纳什谈判优化模型是一种合作博弈,在首先实现参与全体的利益最大化后,多个参

与者之间通过相互谈判进行合作收益分配。纳什谈判模型满足一组公理,包括:对称性;帕累托最优。纳什谈判标准模型如式(38)所示,纳什乘积最大化的解即为纳什谈判博弈问题的均衡解

 

式中:Ui 为谈判主体的效益;为参与主体合作前的效益,即谈判破裂点。纳什谈判模型式(38)为

一个多重变量耦合的非凸非线性问题,因此将上述模型分解转换为两个子问题:微网联盟成本最小化子问题(P1)和收益分配子问题(P2),依次求解。

1.2 基于ADMM的微电网群分布式能量管理策略

对于分布式优化问题,交替方向乘子法(ADMM)属于一种简单高效、鲁棒性强的算法,其具有良好收敛性的同时,不要求优化问题的目标函数为严格的凸函数。

微电网内储能设备、各分布式电源的出力以及各微电网与主网之间的期望交互功率可以由式 (25)得到。根据上述结果,MGEMS 先通过式(26)更新微电网之间、微电网与主网之间联络线的传输功率,再不断迭代调整期望交互功率的大小。由式 (27)可知,只需要迭代更新作为拉格朗日乘子的期望交互功率值,每个微电网内部机组的出力信息无需上报,因此,ADMM

算法充分保护了各微电网的隐私。

 

一、纳什博弈原理及其在能源共享中的应用
  1. 纳什均衡与纳什谈判理论
    纳什均衡是博弈论的核心概念,描述理性参与者在不合作博弈中的稳定策略状态,即任何一方无法通过单方面改变策略获得更高收益。在能源共享场景中,这一理论被扩展为纳什谈判理论,用于解决多主体间的合作收益分配问题。其核心模型为最大化各参与者效用相对于分歧点的乘积:

  1. 应用场景与改进方向
    • 动态定价机制:文献[24]提出结合主从博弈与纳什谈判的模型,以园区运营商为领导者制定动态电价,用户作为跟随者响应,实现收益最大化。
    • 非对称纳什谈判:考虑不同微网的议价能力差异,引入权重因子调整效用函数,更贴合实际利益分配需求。

    • 多能源耦合:在冷-热-电-气综合能源系统中,纳什博弈可协调多能流交互与碳排放约束。

二、交替方向乘子法(ADMM)的核心思想与优势
  1. 算法原理
    ADMM是一种分布式优化算法,通过分解原问题为多个子问题,交替更新变量和对偶变量以实现全局收敛。其数学形式为:

对应的增广拉格朗日函数为:

通过迭代更新x、z和y逐步逼近最优解。

  1. 多微网场景下的适配性
    • 隐私保护:各微网仅需交换中间变量(如能源交易量),无需暴露本地成本函数或约束条件。
    • 计算效率:ADMM将大规模优化问题分解为局部子问题,降低计算复杂度,适合实时调度。
    • 收敛性保障:在凸问题中,ADMM具有线性收敛速度,且对通信延迟和噪声具有鲁棒性。

三、纳什博弈与ADMM的协同设计
  1. 联合优化框架
    • 问题分解:将多微网能源共享问题拆分为合作收益最大化公平分配两个子问题。例如:
  • 子问题1:通过ADMM求解联盟整体成本最小化,协调能源交易量与储能调度。
  • 子问题2:基于纳什谈判分配收益,确保个体效用不低于分歧点。
    • 迭代流程

  1. 典型案例
    • 电能共享与储能租赁:文献[28]提出广义纳什博弈模型描述产消者对共享储能容量的竞争,通过ADMM优化容量分配,提升储能利用率30%。
    • 多能源协同调度:在风-光-氢多主体系统中,ADMM用于分布式求解各主体的运行约束,结合纳什谈判实现整体效益提升20%。
    • 鲁棒优化:考虑可再生能源出力不确定性,采用两阶段鲁棒模型,ADMM处理非凸约束,纳什均衡确保交易公平性。

四、系统架构与关键技术
  1. 多微网能源共享架构
    • 物理层:多个微网通过能源路由器(ER)或电力联络线互联,支持电能、热能和燃料的多向流动(图1)。

    • 信息层:基于5G或区块链实现点对点(P2P)通信,确保交易透明性和数据安全。
    • 控制层:中央能源管理系统(EMS)或分布式智能体协调全局优化,ADMM与博弈模型嵌入决策算法。


2. 关键技术挑战

  • 模型非凸性:风光出力随机性和储能寿命约束导致目标函数非凸,需结合启发式算法或凸松弛技术。
  • 动态博弈均衡:实时电价波动和需求响应需动态调整纳什均衡策略,可能影响收敛速度。
  • 多时间尺度协调:长期容量规划与短期调度需分层优化,ADMM需适配不同时间颗粒度。

五、研究前沿与未来方向
  1. 扩展应用场景

    • 碳交易集成:将碳排放成本纳入效用函数,设计碳-能联合市场博弈机制。
    • 虚拟电厂(VPP) :通过主从博弈协调VPP运营商与微网联盟,ADMM优化集群调度。
  2. 算法改进

    • 非精确ADMM:允许子问题近似求解以加速收敛,适用于大规模系统。
    • 深度强化学习(DRL) :结合DRL与博弈论,实现动态环境下的自适应策略生成。
  3. 实践验证

    • 数字孪生平台:构建电力调度元宇宙,模拟多微网交互与算法性能。
    • 硬件在环(HIL)测试:通过实时仿真验证ADMM-博弈模型的工程可行性。

六、结论

纳什博弈与ADMM的结合为多微网能源共享提供了兼顾公平性与效率的解决方案。通过合作博弈提升整体效益,ADMM实现分布式优化,二者协同解决了传统集中式方法在隐私保护、计算复杂度和动态适应性方面的不足。未来研究需进一步探索复杂约束下的模型鲁棒性、多能流耦合机制,以及与其他新兴技术(如区块链、AI)的深度融合,推动能源互联网向低碳化、智能化方向发展。

📚2 运行结果

2.1 上层

2.1.1 微电网1

 

 2.1.2 微电网2

2.1.3  微电网3

 

 

2.2  下层

 

 

 

 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]吴锦领,楼平,管敏渊,黄宇宙,张炜鑫,曹元成.基于非对称纳什谈判的多微网电能共享运行优化策略[J].电网技术,2022,46(07):2711-2723.DOI:10.13335/j.1000-3673.pst.2021.1590.

[2]高松,何俊,杨松坤,肖白.基于交替方向乘子法的多微电网能量共享方法研究[J].电网与清洁能源,2022,38(06):113-120.

[3]胡蓉,魏震波,黄宇涵,都成,卢炳文,方涛.基于交替乘子法与Shapley分配法的多微网联合经济调度[J].电力建设,2021,42(07):28-38.

🌈4 Matlab代码、数据、文章下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值