Dijkstra算法

#define MAXVEX 9
#define INFINITY 65535
typedef int Pathmatirx[MAXVEX];              //用于存储最短路径下标的数组
typedef int ShortPathTable[MAXVEX];          //用于存储到各点最短路径的权值和
											 //Dijkstra算法,求有向网G的v0顶点到其余顶点v最短路径P[v]及带权长度D[v]
											 //P[v]的值为前驱顶点下标,D[v]表示 v0 到 v 的最短路径长度和
void ShortestPath_Dijkstra(MGraph G, int v0, Pathmatirx *P, ShortPathTable *D)
{
	int v, w, k, min;
	int final[MAXVEX];      //final[w] = 1 表示求得顶点 v0 至 vw 的最短路径
	for (v = 0; v < G.numVertexes; v++)       //初始化数据
	{
		final[v] = 0;                   //全部顶点初始化为未知最短路径状态
		(*D)[v] = G.matirx[v0][v];      //将与 v0 点有连线的顶点加上权值
		(*P)[v] = 0;                    //初始化路径数组 P 为 0
	}
	(*D)[v0] = 0;                  //v0 至 v0 路径为 0
	final[v0] = 1;                 //v0 至 v0 不需要求路径
	
	//开始主循环,每次求得v0到某个v顶点的最短路径
	for (v = 1; v < G.numVertexes; v++)
	{
		min = INFINITY;              //当前所知离v0顶点的最近距离
		for (w = 0; w < G.numVertexes; w++)       //寻找离v0最近的顶点
		{
			if (!final[w] && (*D)[w] < min)
			{
				k = w;
				min = (*D)[w];           //w顶点离v0顶点更近
			}
		}

		final[k] = 1;                 //将目前找到的最近的顶点置为 1
		for (w = 0; w < G.numVertexes; w++)      //修正当前最短路径及距离
		{
			//如果经过 v 顶点的路径比现在这条路径的长度短的话
			if (!final[w] && (min + G.matirx[k][w] < (*D)[w]))
			{
				//说明找到了更短的路径,修改 D[w] 和 P[w]
				(*D)[w] = min + G.matirx[k][w];       //修改当前路径长度
				(*P)[w] = k;
			}
		}
	}

} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值