论文阅读《FEDERATED COLLABORATIVE FILTERING FOR PRIVACY-PRESERVING PERSONALIZED RECOMMENDATION SYSTEM》

这篇2019年华为的论文探讨了如何使用联邦学习在保护用户隐私的同时,实现个性化推荐。作者提出了FCF模型,首次将协同过滤与联邦学习相结合,证明了其在不牺牲准确性的情况下适用于分布式场景。后续的联邦推荐研究大多基于此基础进行扩展或优化。
摘要由CSDN通过智能技术生成

论文《FEDERATED COLLABORATIVE FILTERING FOR PRIVACY-PRESERVING PERSONALIZED RECOMMENDATION SYSTEM 》阅读


PRIVACY-PRESERVING PERSONALIZED RECOMMENDATION
SYSTEM
》阅读)

论文概况

本文是2019年华为的一篇联邦推荐论文,使用联邦学习来保护客户端数据隐私,是联邦推荐奠基性文章。

Introduction

作者提出问题

  • 集中式存储和训练用户数据侵犯用户隐私

对于上述问题,作者提出了FCF模型
(1) 制定了第一个联邦协作过滤方法
(2) 证明了所提出的联邦方法在个性化推荐中的经典机器学习应用中的适用性
(3) 证明了协作过滤可以在不损失准确性的情况下进行联邦

Method

在这里插入图片描述

A.协同过滤

用户嵌入矩阵和物品嵌入矩阵是 X ∈ R K × N Y ∈ R ˙ K × M \mathbf{X}\in\mathcal{R}^{K\times N}_{\text{}} \mathbf{Y}\in\dot{\mathcal{R}}^{K\times M} XRK×NYR˙K×M,则用户对物品的评分是
r ^ u i = x u T y i . \hat{r}_{ui}=\mathbf{x}_u^T\mathbf{y}_i. r^ui=xuTyi.
同时,作者认为用户对一个物品打分是0可能是因为用户不喜欢或者用户根本不知道这个物品。为了表达这种不确定性,作者设计了一个置信参数
c u i = 1 + α r u i c_{ui}=1+\alpha r_{ui} cui=1+αrui
用户与物品的交互为:
p u i = { 1 r u i > 0 , 0 r u i = 0 p_{ui}=\begin{cases}1&r_{ui}>0,\\0&r_{ui}=0\end{cases} pui={10rui>0,rui=0
普通的协同过滤目标函数为:
J = ∑ u ∑ j c u i ( p u i − x u T y i ) 2 + λ ( ∑ u ∥ x u ∥ 2 + ∑ i ∥ y i ∥ 2 ) J=\sum_u\sum_jc_{ui}(p_{ui}-\mathbf{x}_u^T\mathbf{y}_i)^2+\lambda\Big(\sum_u\lVert\mathbf{x}_u\rVert^2+\sum_i\lVert\mathbf{y}_i\rVert^2\Big) J=ujcui(puixuTyi)2+λ(uxu2+iyi2)
∂ J ∂ y i = − 2 ∑ u [ c u i ( p u i − x u T y i ) ] x u + 2 λ y i , \frac{\partial J}{\partial\mathbf{y}_{i}}=-2\sum_{u}\big[c_{ui}(p_{ui}-\mathbf{x}_{u}^{T}\mathbf{y}_{i})\big]\mathbf{x}_{u}+2\lambda\mathbf{y}_{i}, yiJ=2u[cui(puixuTyi)]xu+2λyi,
∂ J ∂ x u = − 2 ∑ i [ c u i ( p u j − x u T y i ) ] y i + 2 λ x u . \frac{\partial J}{\partial\mathbf{x}_{u}}=-2\sum_{i}\big[c_{ui}(p_{uj}-\mathbf{x}_{u}^{T}\mathbf{y}_{i})\big]\mathbf{y}_{i}+2\lambda\mathbf{x}_{u}. xuJ=2i[cui(pujxuTyi)]yi+2λxu.

B.联邦协同过滤

用户嵌入更新:服务器直接将全局物品嵌入发送给客户端,客户端以此更新用户向量

物品嵌入更新:对于每个客户端,利用自己的用户嵌入更新物品嵌入,物品嵌入更新如下:
y i = y i − γ ∂ J ∂ y i , \mathbf{y}_{i}=\mathbf{y}_{i}-\gamma\frac{\partial J}{\partial\mathbf{y}_{i}}, yi=yiγyiJ,
各个客户端将物品梯度上传到服务器,实现全局物品嵌入更新
f ( u , i ) = [ c u i ( p u i − x u T y i ) ] x u , f(u,i)=\begin{bmatrix}c_{ui}(p_{ui}-\mathbf{x}_{u}^{T}\mathbf{y}_{i})\end{bmatrix}\mathbf{x}_{u}, f(u,i)=[cui(puixuTyi)]xu,
∂ J ∂ y i = − 2 ∑ u f ( u , i ) + 2 λ y i . \frac{\partial J}{\partial\mathbf{y}_i}=-2\sum_uf(u,i)+2\lambda\mathbf{y}_i. yiJ=2uf(u,i)+2λyi.

此外,作者也分析了adam更新方法:
m = β 1 m + ( 1 − β 1 ) ∂ J ∂ y i v = β 2 v + ( 1 − β 2 ) ( ∂ J ∂ y i ) 2 \begin{aligned}m&=\beta_1m+(1-\beta_1)\frac{\partial J}{\partial\mathbf{y}_i}\\\\v&=\beta_2v+(1-\beta_2)\Bigg(\frac{\partial J}{\partial\mathbf{y}_i}\Bigg)^2\end{aligned} mv=β1m+(1β1)yiJ=β2v+(1β2)(yiJ)2

m ^ = m 1 − β 1 , \hat{m}=\frac{m}{1-\beta_{1}}, m^=1β1m,
v ^ = v 1 − β 2 . \hat{v}=\frac{v}{1-\beta_{2}}. v^=1β2v.
y i   =   y i − γ v ^ + ϵ m ^ \mathbf{y}_{i}\:=\:\mathbf{y}_{i}-\frac{\gamma}{\sqrt{\hat{v}}+\epsilon}\hat{m} yi=yiv^ +ϵγm^

C.结果

在这里插入图片描述

总结

FCF是第一个将推荐与联邦结合的模型,模型整体架构简单,可行性强,之后的联邦推荐模型都是在其基础上进行改进或攻防。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值