论文阅读《 FEDERATED RECOMMENDATION WITH ADDITIVE PERSONALIZATION》

论文概况

本文是2024 ICLR的一篇联邦推荐论文,提出了 FedRAP,旨在解决联邦学习(FL)环境中的推荐系统挑战。其主要目标是提高推荐系统的个性化程度,同时减少通信成本,这在联邦学习系统中通常是一个重要问题。FedRAP 通过学习一个全局视角的物品嵌入(通过FL)和每个用户本地的个性化视角来实现这一目标。

Introduction

  • 尽管现有的联邦推荐系统在全球共享物品嵌入并将用户嵌入保持本地,但这种方法忽略了用户对相同物品的不同感知。FedRAP 通过引入加性个性化方法,将全球和用户特定的物品嵌入结合起来,从而提高个性化推荐并减少通信开销。

Method

在这里插入图片描述

A. 问题定义

假设我们有一个评分矩阵 R,其中的每个元素表示用户对物品的评分。该矩阵的维度为 n × m,其中 n 表示用户数量,m 表示物品数量。每个用户对物品的评分为 r_ij。在每个客户端 i 上,我们有一个本地的物品嵌入矩阵 D(i),和一个全局共享的物品嵌入矩阵 C。

目标是通过加性个性化来构建每个用户的推荐系统。具体而言,我们希望结合每个用户的本地物品嵌入 D(i) 和全局物品嵌入 C 来生成个性化的物品推荐。

B. 目标函数

预测评分:我们使用逻辑回归模型来预测每个用户对物品的评分,公式如下:
在这里插入图片描述最小化重建误差:为了最小化真实评分与预测评分之间的差异,我们使用交叉熵损失函数进行优化,具体如下:
在这里插入图片描述
正则化项:为了确保全局物品嵌入 C 和本地物品嵌入 D(i) 之间的差异,使得它们是互补的,我们使用以下正则化项
在这里插入图片描述
加性个性化优化:为了减少由于在训练初期使用加性个性化带来的性能下降,我们引入了一个逐渐增加的正则化策略。具体地,我们引入了两个正则化项来分别控制 C 的稀疏性和 D(i) 和 C 的差异,优化目标函数如下:
在这里插入图片描述

C.结果

在这里插入图片描述

总结

方法简单,思路清晰,证明可靠

### 关于推荐系统与联邦学习的研究论文 #### 联邦学习中的个性化推荐算法 在联邦学习框架下,为了提升模型的泛化能力和保护用户数据隐私,《Think Locally, Act Globally: Federated Learning with Local and Global Representations》提出了结合局部和全局表示的方法[^4]。该方法通过引入本地特征向量,在不牺牲整体性能的情况下增强了针对特定用户的适应性。 #### 基于联邦学习的安全性和效率改进方案 考虑到隐私问题是联邦学习的重要组成部分,有研究表明需要采用适当的技术手段来保障训练过程中的信息安全[^5]。这些措施不仅限于加密通信协议的应用,还包括差分隐私机制的设计以及对抗攻击模式下的防御策略开发等方面的工作。 #### 序列型推荐系统的最新进展 对于时间序列类别的商品预测任务而言,近年来出现了许多创新性的解决方案。例如,在IJCAI、ICML等多个顶级会议上发布的研究成果展示了如何利用图神经网络(GNN)、自注意力机制等先进技术改善传统基于矩阵分解或协同过滤的方法效果[^1]。 ```python import numpy as np from sklearn.model_selection import train_test_split def federated_learning_with_local_global_representations(data): """ 实现了一个简单的模拟函数, 展示了如何在一个假设场景中应用联合学习并融合地方和个人表征。 参数: data (DataFrame): 用户行为记录的数据集 返回值: tuple: 训练后的全局模型参数和其他统计信息 """ X_train, X_test, y_train, y_test = train_test_split( data.drop('target', axis=1), data['target'], test_size=0.2) # 这里省略具体实现细节... global_model_params = {} stats_info = {"accuracy": np.random.rand()} return global_model_params, stats_info ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值