12.非线性支持向量机与核函数
线性可分:用一个分离超平面 ω ⋅ x + b \omega\cdot x+b ω⋅x+b将数据集完全分开;
非线性可分:用一个超曲面分开数据集。
非线性问题往往不好求解,所以希望能用解线性分类间题的方法解决这个问题。
采取的方法是进行一个非线性变换,将非线性问题变换为线性问题,通过解变换后的线性问题的方法求解原来的非线性问题。
即:怎么将原空间上的点映射到新空间上的点!
13.核函数有什么用?
原空间:输入空间 min ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i ⋅ x j ) − ∑ i = 1 N α i s . t . ∑ i = 1 N α i y i = 0 , α i ≥ 0 , i = 1 , 2 , ⋯ , N \begin{split} &\min\;\sum_{i=1}^{N}\sum_{j=1}^{N}\alpha_i\alpha_jy_iy_j(x_i\cdot x_j)-\sum_{i=1}^{N}\alpha_i\\ &s.t.\;\sum_{i=1}^{N}\alpha_iy_i=0\;,\;\alpha_i\geq0\;,\;i=1,2,\cdots,N \end{split} mini=1∑Nj=1∑Nαiαjyiyj(xi⋅xj)−i=1∑Nαis.t.i=1∑Nαiyi=0,αi≥0,i=1,2,⋯,N
在上式中 x i ⋅ x j x_i\cdot x_j xi⋅xj是内积,新空间中可能变为 z z z,对应希尔伯特空间,要能计算 z i ⋅ z j z_i\cdot z_j zi⋅zj。
希望找到一个映射 ϕ ( x ) : χ → \phi(x):\chi\rightarrow ϕ(x):χ→ H H H z i = ϕ ( x i ) , z j = ϕ ( x j ) z i ⋅ z j = ϕ ( x i ) ⋅ ϕ ( x j ) = K ( x i , x j ) \begin{split} &z_i=\phi(x_i)\;,\;z_j=\phi(x_j)\\ &z_i\cdot z_j=\phi(x_i)\cdot \phi(x_j)=K(x_i,x_j) \end{split} zi=ϕ(xi),zj=ϕ(xj)zi⋅zj=ϕ(xi)⋅ϕ(xj)=K(xi,xj)
如果可以实现,非线性支持向量机变为:
min
∑
i
=
1
N
∑
j
=
1
N
α
i
α
j
y
i
y
j
K
(
x
i
,
x
j
)
−
∑
i
=
1
N
α
i
\min\;\sum_{i=1}^{N}\sum_{j=1}^{N}\alpha_i\alpha_jy_iy_jK(x_i,x_j)-\sum_{i=1}^{N}\alpha_i
mini=1∑Nj=1∑NαiαjyiyjK(xi,xj)−i=1∑Nαi
接下来我们看一个例子:
K ( x , z ) = ( x ⋅ z ) 2 , x z ∈ R 2 K(x,z)=(x\cdot z)^2\;,\;x\;z\in R^2 K(x,z)=(x⋅z)2,xz∈R2
请问: ϕ → H \phi\rightarrow H ϕ→H?
解:
x
=
(
x
(
1
)
,
x
(
2
)
)
T
,
z
=
(
z
(
1
)
,
z
(
2
)
)
T
x=(x^{(1)},x^{(2)})^T\;,\;z=(z^{(1)},z^{(2)})^T
x=(x(1),x(2))T,z=(z(1),z(2))T
K
(
x
,
z
)
=
(
x
(
1
)
z
(
1
)
+
x
(
2
)
z
(
2
)
)
2
=
(
x
(
1
)
z
(
1
)
)
2
+
2
x
(
1
)
x
(
2
)
z
(
1
)
z
(
2
)
+
(
x
(
2
)
z
(
2
)
)
2
\begin{split} K(x,z)&=(x^{(1)}z^{(1)}+x^{(2)}z^{(2)})^2\\ &=(x^{(1)}z^{(1)})^2+2x^{(1)}x^{(2)}z^{(1)}z^{(2)}+(x^{(2)}z^{(2)})^2 \end{split}
K(x,z)=(x(1)z(1)+x(2)z(2))2=(x(1)z(1))2+2x(1)x(2)z(1)z(2)+(x(2)z(2))2
我们尝试
H
=
R
3
H=R^3
H=R3
ϕ
(
x
)
=
(
(
x
(
1
)
)
2
,
2
x
(
1
)
x
(
2
)
,
(
x
(
2
)
)
2
)
T
\phi(x)=((x^{(1)})^2,\sqrt{2}x^{(1)}x^{(2)},(x^{(2)})^2)^T
ϕ(x)=((x(1))2,2x(1)x(2),(x(2))2)T
1)
ϕ
:
R
2
→
R
3
\phi:R^2\rightarrow R^3
ϕ:R2→R3
ϕ
(
x
)
⋅
ϕ
(
z
)
=
(
x
(
1
)
z
(
1
)
)
2
+
2
x
(
1
)
x
(
2
)
z
(
1
)
z
(
2
)
+
(
x
(
2
)
z
(
2
)
)
2
=
K
(
x
,
z
)
\phi(x)\cdot \phi(z)=(x^{(1)}z^{(1)})^2+2x^{(1)}x^{(2)}z^{(1)}z^{(2)}+(x^{(2)}z^{(2)})^2=K(x,z)
ϕ(x)⋅ϕ(z)=(x(1)z(1))2+2x(1)x(2)z(1)z(2)+(x(2)z(2))2=K(x,z)
2) ϕ ( x ) = 1 2 ( ( x ( 1 ) ) 2 − ( x ( 2 ) ) 2 , 2 x ( 1 ) x ( 2 ) , ( x ( 1 ) ) 2 + ( x ( 2 ) ) 2 ) T ϕ ( x ) ⋅ ϕ ( z ) = K ( x , z ) \begin{split} &\phi(x)=\frac{1}{\sqrt{2}}((x^{(1)})^2-(x^{(2)})^2\;,\;2x^{(1)}x^{(2)}\;,\;(x^{(1)})^2+(x^{(2)})^2)^T\\ &\phi(x)\cdot \phi(z)=K(x,z) \end{split} ϕ(x)=21((x(1))2−(x(2))2,2x(1)x(2),(x(1))2+(x(2))2)Tϕ(x)⋅ϕ(z)=K(x,z)
对于同一个核函数,有多个不同的映射!
我们总结一下:
原空间: χ ∈ R 2 , x = ( x ( 1 ) , x ( 2 ) ) T ∈ χ \chi\in R^2\;,\;x=(x^{(1)},x^{(2)})^T\in \chi χ∈R2,x=(x(1),x(2))T∈χ
新空间: Z ∈ R 2 , z = ( z ( 1 ) , z ( 2 ) ) T ∈ Z z = ϕ ( x ) = ( ( x ( 1 ) ) 2 , ( x ( 2 ) ) 2 ) T ⇒ ω 1 ( x ( 1 ) ) 2 + ω 2 ( x ( 2 ) ) 2 + b = 0 ⇒ ω 1 z ( 1 ) + ω 2 z ( 2 ) + b = 0 \begin{split} &Z\in R^2\;,\;z=(z^{(1)},z^{(2)})^T\in Z\\ &z=\phi(x)=((x^{(1)})^2,(x^{(2)})^2)^T\\ \Rightarrow &\omega_1(x^{(1)})^2+\omega_2(x^{(2)})^2+b=0\\ \Rightarrow &\omega_1z^{(1)}+\omega_2z^{(2)}+b=0 \end{split} ⇒⇒Z∈R2,z=(z(1),z(2))T∈Zz=ϕ(x)=((x(1))2,(x(2))2)Tω1(x(1))2+ω2(x(2))2+b=0ω1z(1)+ω2z(2)+b=0
用线性分类方法求解非线性分类问题分为两步:
首先使用一个变换将原空间的数据映射到新空间;
然后在新空间里用线性分类学习方法从训练数据中学习分类模型。
核技巧就属于这样的方法。
核技巧应用到支持向量机,其基本想法:
通过一个非线性变换将输入空间(欧氏空间R”或离散集合)对应于一个特征空间(希尔伯特空间),使得在输入空间中的超曲面模型对应于特征空间中的超平面模型(支持向量机)。分类问题的学习任务通过在特征空间中求解线性支
持向量机就可以完成.
14.如何找正定核
原: x i ⋅ x j x_i\cdot x_j xi⋅xj
新: ϕ ( x i ) ⋅ ϕ ( x j ) = K ( x i , x j ) \phi(x_i)\cdot \phi(x_j)=K(x_i,x_j) ϕ(xi)⋅ϕ(xj)=K(xi,xj)核函数
我们要替换原来的内积定义,同一个向量它的内积一定大于等于0,所以找正定核是最合适不过的。
解: 第一步:我们希望找到对称函数 K ( x , z ) K(x,z) K(x,z)
x , z ∈ χ x,z\in\chi x,z∈χ,为输入空间。
需要对 ∀ x 1 , x 2 , ⋯ , x m ∈ χ \forall x_1,x_2,\cdots,x_m\in\chi ∀x1,x2,⋯,xm∈χ, K ( x , z ) K(x,z) K(x,z)对应的 G r a m Gram Gram矩阵半正定。
为什么要任意选取呢?因为训练数据集不确定。
我们的 G r a m Gram Gram矩阵为:
原来的: [ x 1 ⋅ x 1 x 1 ⋅ x 2 ⋯ x 1 ⋅ x m x 2 ⋅ x 1 x 2 ⋅ x 2 ⋯ x 2 ⋅ x m ⋯ ⋯ ⋯ ⋯ x m ⋅ x 1 x m ⋅ x 2 ⋯ x m ⋅ x m ] \begin{bmatrix} x_1\cdot x_1 & x_1\cdot x_2 & \cdots & x_1\cdot x_m \\ x_2\cdot x_1 & x_2\cdot x_2 & \cdots & x_2\cdot x_m \\ \cdots & \cdots & \cdots & \cdots \\ x_m\cdot x_1 & x_m\cdot x_2 &\cdots &x_m\cdot x_m \end{bmatrix} ⎣ ⎡x1⋅x1x2⋅x1⋯xm⋅x1x1⋅x2x2⋅x2⋯xm⋅x2⋯⋯⋯⋯x1⋅xmx2⋅xm⋯xm⋅xm⎦ ⎤
新的: [ K ( x 1 ⋅ x 1 ) K ( x 1 ⋅ x 2 ) ⋯ K ( x 1 ⋅ x m ) K ( x 2 ⋅ x 1 ) K ( x 2 ⋅ x 2 ) ⋯ K ( x 2 ⋅ x m ) ⋯ ⋯ ⋯ ⋯ K ( x m ⋅ x 1 ) K ( x m ⋅ x 2 ) ⋯ K ( x m ⋅ x m ) ] \begin{bmatrix} K(x_1\cdot x_1) & K(x_1\cdot x_2) & \cdots & K(x_1\cdot x_m) \\ K(x_2\cdot x_1) & K(x_2\cdot x_2) & \cdots & K(x_2\cdot x_m) \\ \cdots & \cdots & \cdots & \cdots \\ K(x_m\cdot x_1) & K(x_m\cdot x_2) &\cdots & K(x_m\cdot x_m) \end{bmatrix} ⎣ ⎡K(x1⋅x1)K(x2⋅x1)⋯K(xm⋅x1)K(x1⋅x2)K(x2⋅x2)⋯K(xm⋅x2)⋯⋯⋯⋯K(x1⋅xm)K(x2⋅xm)⋯K(xm⋅xm)⎦ ⎤
我们的新矩阵需要满足半正定。
半正定的定义:关于矩阵 A A A,对 ∀ x \forall x ∀x(非零)存在, x T A x ≥ 0 x^TAx\geq0 xTAx≥0,则称矩阵 A A A是半正定。
半负定的定义: x T A x ≤ 0 x^TAx\leq0 xTAx≤0
正定的定义: x T A x > 0 x^TAx>0 xTAx>0
负定的定义: x T A x < 0 x^TAx<0 xTAx<0
我们的判定方法如下:
第一种方法: x T A x = y T D y ≥ 0 x^TAx=y^TDy\geq0 xTAx=yTDy≥0
其中 D D D为对角矩阵,所有元素均大于等于0。
找 A A A的特征根,全部都是大于等于0
第二种方法:
所有主子行列式大于等于0
15.映射下的新空间
我们回顾之前学习的欧式空间的定义:
我们最初的空间叫做向量空间或者线性空间,这个空间的特点是加法运算(+)和数乘运算( × \times ×)是封闭的。
我们在此基础上定义内积定义,使得加法运算(+)、数乘运算( × \times ×)和内积运算( ⋅ \cdot ⋅)是封闭的。形成内积空间。
如果我们想知道向量的长度,我们引入范数的定义,形成赋范线性空间。
上面的向量空间、内积空间、赋范线性空间构成我们常见的欧式空间。
进一步,想要研究收敛性和极限,所有点都在空间内,叫做 B a n a c h Banach Banach空间。
如果不是在我们熟知的欧氏空间中研究上面的内容,我们换了一个空间,定义了新的内积及范数,并且空间是完备的,称为希尔伯特空间。
具体的实现步骤:
解: 1):
构成向量空间(找到向量空间)
ϕ \phi ϕ表示为: x → K ( ⋅ , x ) x\rightarrow K(\cdot,x) x→K(⋅,x)
对于 ∀ x i ∈ χ , α i ∈ R , i = 1 , 2 , ⋯ , m \forall x_i\in\chi\;,\;\alpha_i\in R\;,\;i=1,2,\cdots,m ∀xi∈χ,αi∈R,i=1,2,⋯,m
定义: f ( ⋅ ) = ∑ i = 1 m α i K ( ⋅ , x i ) f(\cdot)=\sum_{i=1}^{m}\alpha_iK(\cdot,x_i) f(⋅)=i=1∑mαiK(⋅,xi)
f f f构成集合 S S S, S S S变成一个向量空间。
验证: 从 S S S中 ∀ f , g \forall f,g ∀f,g,有: f = ∑ i = 1 m α i K ( ⋅ , x i ) g = ∑ j = 1 v β j K ( ⋅ , z j ) \begin{split} &f=\sum_{i=1}^{m}\alpha_iK(\cdot,x_i)\\ &g=\sum_{j=1}^{v}\beta_jK(\cdot,z_j)\\ \end{split} f=i=1∑mαiK(⋅,xi)g=j=1∑vβjK(⋅,zj) f + g = ∑ i = 1 m α i K ( ⋅ , x i ) + ∑ j = 1 v β j K ( ⋅ , z j ) = ∑ i = 1 m + l a i K ( ⋅ , μ i ) ∈ S a f = ∑ i = 1 m a α i K ( ⋅ , x i ) , a α i ∈ R \begin{split} f+g&=\sum_{i=1}^{m}\alpha_iK(\cdot,x_i)+\sum_{j=1}^{v}\beta_jK(\cdot,z_j)\\ &=\sum_{i=1}^{m+l}a_iK(\cdot,\mu_i)\in S\\ af&=\sum_{i=1}^{m}a\alpha_iK(\cdot,x_i)\;,\;a\alpha_i\in R \end{split} f+gaf=i=1∑mαiK(⋅,xi)+j=1∑vβjK(⋅,zj)=i=1∑m+laiK(⋅,μi)∈S=i=1∑maαiK(⋅,xi),aαi∈R
综上所述, S S S对加法运算和数乘运算是封闭的。
2)在集合 S S S上定义内积(内积空间)
定义
∗
*
∗,对
∀
f
,
g
∈
S
\forall f,g\in S
∀f,g∈S,我们定义:
f
∗
g
=
∑
i
=
1
m
∑
j
=
1
l
α
i
β
j
K
(
x
i
,
z
j
)
f*g=\sum_{i=1}^{m}\sum_{j=1}^{l}\alpha_i\beta_jK(x_i,z_j)
f∗g=i=1∑mj=1∑lαiβjK(xi,zj)
内积必须满足四个条件: { ( 1 ) : ( c f ) ∗ g = c ( f ∗ g ) , c ∈ R ( 2 ) : ( f + g ) ∗ h = f ∗ h + g ∗ h , h ∈ S ( 3 ) : f ∗ g = g ∗ f ( 4 ) : f ∗ f ≥ 0 ; f ∗ f = 0 ⇒ f = 0 \left\{ \begin{split} &(1):(cf)*g=c(f*g)\;,\;c\in R\\ &(2):(f+g)*h=f*h+g*h\;,\;h\in S\\ &(3):f*g=g*f\\ &(4):f*f\geq0\quad \quad ;f*f=0\Rightarrow f=0 \end{split} \right. ⎩ ⎨ ⎧(1):(cf)∗g=c(f∗g),c∈R(2):(f+g)∗h=f∗h+g∗h,h∈S(3):f∗g=g∗f(4):f∗f≥0;f∗f=0⇒f=0
我们接下来验证是否满足四个条件:
首先是第一个: l e f t : c f = c ∑ i = 1 m α i K ( ⋅ , x i ) = ∑ i = 1 m c α i K ( ⋅ , x i ) ( c f ) ∗ g = ∑ i = 1 m ∑ j = 1 l ( c α i ) β j K ( x i , z j ) = c ∑ i = 1 m ∑ j = 1 l α i β j K ( x i , z j ) = c ( f ∗ g ) = r i g h t \begin{split} left\;:\;&cf=c\sum_{i=1}^{m}\alpha_iK(\cdot,x_i)=\sum_{i=1}^{m}c\alpha_iK(\cdot,x_i)\\ (cf)*g&=\sum_{i=1}^{m}\sum_{j=1}^{l}(c\alpha_i)\beta_jK(x_i,z_j)\\ &=c\sum_{i=1}^{m}\sum_{j=1}^{l}\alpha_i\beta_jK(x_i,z_j)\\ &=c(f*g)=right \end{split} left:(cf)∗gcf=ci=1∑mαiK(⋅,xi)=i=1∑mcαiK(⋅,xi)=i=1∑mj=1∑l(cαi)βjK(xi,zj)=ci=1∑mj=1∑lαiβjK(xi,zj)=c(f∗g)=right
接着是第二个:
首先我们定义: h = ∑ q = 1 t b q K ( ⋅ , v q ) h=\sum_{q=1}^{t}b_qK(\cdot,v_q) h=q=1∑tbqK(⋅,vq)
令 a i , i = 1 , 2 , ⋯ , m + l a_i\;,\;i=1,2,\cdots,m+l ai,i=1,2,⋯,m+l代替 α 1 , α 2 , ⋯ , α m , β 1 , β 2 , ⋯ , β l \alpha_1,\alpha_2,\cdots,\alpha_m,\beta_1,\beta_2,\cdots,\beta_l α1,α2,⋯,αm,β1,β2,⋯,βl。
令
μ
i
,
i
=
1
,
2
,
⋯
,
m
+
l
\mu_i\;,\;i=1,2,\cdots,m+l
μi,i=1,2,⋯,m+l代替
x
1
,
x
2
,
⋯
,
x
m
,
z
1
,
z
2
,
⋯
,
z
l
x_1,x_2,\cdots,x_m,z_1,z_2,\cdots,z_l
x1,x2,⋯,xm,z1,z2,⋯,zl。
l
e
f
t
:
(
f
+
g
)
∗
h
=
∑
i
=
1
m
+
l
∑
q
=
1
t
a
i
b
q
K
(
μ
i
,
v
q
)
r
i
g
h
t
:
∑
i
=
1
m
∑
q
=
1
t
α
i
b
q
K
(
α
i
,
v
q
)
+
∑
j
=
1
l
∑
q
=
1
t
β
j
b
q
K
(
z
j
,
v
q
)
⇒
l
e
f
t
=
r
i
g
h
t
\begin{split} &left\;:\;(f+g)*h=\sum_{i=1}^{m+l}\sum_{q=1}^{t}a_ib_qK(\mu_i,v_q)\\ &right\;:\;\sum_{i=1}^{m}\sum_{q=1}^{t}\alpha_ib_qK(\alpha_i,v_q)+\sum_{j=1}^{l}\sum_{q=1}^{t}\beta_jb_qK(z_j,v_q)\\ \Rightarrow &left=right \end{split}
⇒left:(f+g)∗h=i=1∑m+lq=1∑taibqK(μi,vq)right:i=1∑mq=1∑tαibqK(αi,vq)+j=1∑lq=1∑tβjbqK(zj,vq)left=right
我们看第三个:很明显已经成立,因为 α i \alpha_i αi和 β j \beta_j βj可以交换, K ( x i , z j ) K(x_i,z_j) K(xi,zj)是对称的,也可以换位置。
最后来看第四个:
我们首先来看第一个部分:
f
∗
f
≥
0
f*f\geq0
f∗f≥0
f
∗
f
=
∑
i
=
1
m
∑
j
=
1
m
α
i
α
j
K
(
x
i
,
x
j
)
f*f=\sum_{i=1}^{m}\sum_{j=1}^{m}\alpha_i\alpha_jK(x_i,x_j)
f∗f=i=1∑mj=1∑mαiαjK(xi,xj)
因为 K ( x i , z j ) K(x_i,z_j) K(xi,zj)是对称的,所以 G r a m Gram Gram矩阵是半正定的,有 x T A x ≥ 0 x^TAx\geq0 xTAx≥0。
所以有 f ∗ f ≥ 0 f*f\geq0 f∗f≥0
接下来我们看第二部分:
首先看充分性,即如果有 f = 0 f=0 f=0。 f = ∑ i = 1 m α i K ( ⋅ , x i ) → α i = 0 ⇒ f ∗ f = ∑ i = 1 m ∑ j = 1 m α i α j K ( x i , x j ) = 0 \begin{split} &f=\sum_{i=1}^{m}\alpha_iK(\cdot,x_i)\rightarrow \alpha_i=0\\ \Rightarrow &f*f=\sum_{i=1}^{m}\sum_{j=1}^{m}\alpha_i\alpha_jK(x_i,x_j)=0 \end{split} ⇒f=i=1∑mαiK(⋅,xi)→αi=0f∗f=i=1∑mj=1∑mαiαjK(xi,xj)=0
充分性得证!
在证明必要性之前,我们先证明接下来一个:
问题: ∀ f , g ∈ S , ( f ∗ g ) 2 ≤ ( f ∗ f ) ( g ∗ g ) \forall f\;,\;g\in S\;,\;(f*g)^2\leq(f*f)(g*g) ∀f,g∈S,(f∗g)2≤(f∗f)(g∗g)
解: 取 λ ∈ R \lambda\in R λ∈R f + λ g ∈ S ⇒ ( f + λ g ) ∗ ( f + λ g ) ≥ 0 ⇒ f ∗ f + 2 λ ( f ∗ g ) + λ 2 ( g ∗ g ) ≥ 0 \begin{split} f+\lambda g\in S&\Rightarrow (f+\lambda g)*(f+\lambda g)\geq0\\ &\Rightarrow f*f+2\lambda(f*g)+\lambda^2(g*g)\geq0\\ \end{split} f+λg∈S⇒(f+λg)∗(f+λg)≥0⇒f∗f+2λ(f∗g)+λ2(g∗g)≥0
我们不妨换一下: ( g ∗ g ) λ 2 + 2 ( f ∗ g ) λ + f ∗ f ≥ 0 (g*g)\lambda^2+2(f*g)\lambda+f*f\geq0 (g∗g)λ2+2(f∗g)λ+f∗f≥0
我们上式是不是很贴近二次函数的问题,要想恒大于0,只需要让判别式 Δ \Delta Δ的值小于等于0即可。
即我们得知: 4 ( f ∗ g ) 2 − 4 ( g ∗ g ) ( f ∗ f ) ≤ 0 ⇒ ( f ∗ g ) 2 ≤ ( f ∗ f ) ( g ∗ g ) \begin{split} &4(f*g)^2-4(g*g)(f*f)\leq0\\ \Rightarrow &(f*g)^2\leq (f*f)(g*g) \end{split} ⇒4(f∗g)2−4(g∗g)(f∗f)≤0(f∗g)2≤(f∗f)(g∗g)
至此,我们的结论得证。接下来,我们回到原问题。
f
=
∑
i
=
1
m
α
i
K
(
⋅
,
x
i
)
f=\sum_{i=1}^{m}\alpha_iK(\cdot,x_i)
f=i=1∑mαiK(⋅,xi)
因为 f , g f\;,\;g f,g是任意取,不妨取特别的 g g g,令 g = K ( ⋅ , x ) g=K(\cdot,x) g=K(⋅,x) f ∗ g = ∑ i = 1 m α i K ( x , x i ) ( f ∗ g ) 2 = ∑ i = 1 m ∑ j = 1 m α i α j K ( x , x i ) K ( x , x j ) f ∗ f = ∑ i = 1 m ∑ j = 1 m α i α j K ( x i , x j ) g ∗ g = K ( x , x ) ( f ∗ f ) ( g ∗ g ) = ∑ i = 1 m ∑ j = 1 m α i α j K ( x i , x j ) K ( x , x ) ( f ∗ g ) 2 ≤ ( f ∗ f ) ( g ∗ g ) = 0 \begin{split} &f*g=\sum_{i=1}^{m}\alpha_iK(x,x_i)\\ &(f*g)^2=\sum_{i=1}^{m}\sum_{j=1}^{m}\alpha_i\alpha_jK(x,x_i)K(x,x_j)\\ &f*f=\sum_{i=1}^{m}\sum_{j=1}^{m}\alpha_i\alpha_jK(x_i,x_j)\\ &g*g=K(x,x)\\ &(f*f)(g*g)=\sum_{i=1}^{m}\sum_{j=1}^{m}\alpha_i\alpha_jK(x_i,x_j)K(x,x)\\ &(f*g)^2\leq (f*f)(g*g)=0 \end{split} f∗g=i=1∑mαiK(x,xi)(f∗g)2=i=1∑mj=1∑mαiαjK(x,xi)K(x,xj)f∗f=i=1∑mj=1∑mαiαjK(xi,xj)g∗g=K(x,x)(f∗f)(g∗g)=i=1∑mj=1∑mαiαjK(xi,xj)K(x,x)(f∗g)2≤(f∗f)(g∗g)=0
因为平方 ( f ∗ g ) 2 ≥ 0 (f*g)^2\geq0 (f∗g)2≥0,所以我们可以得到: ( f ∗ g ) 2 = 0 ⇒ f ∗ g = 0 ⇒ ∑ i = 1 m α i K ( x , x i ) = 0 ⇒ α i = 0 ⇒ f = 0 \begin{split} &(f*g)^2=0\\ \Rightarrow &f*g=0\Rightarrow \sum_{i=1}^{m}\alpha_iK(x,x_i)=0\Rightarrow \alpha_i=0\Rightarrow f=0 \end{split} ⇒(f∗g)2=0f∗g=0⇒i=1∑mαiK(x,xi)=0⇒αi=0⇒f=0
综上所述, ∗ * ∗代表内积运算。此时我们的向量空间变为内积空间。
我们定义
f
f
f和
g
g
g的内积为:
f
⋅
g
=
∑
i
=
1
m
∑
j
=
1
l
α
i
β
j
K
(
x
i
,
z
j
)
f\cdot g=\sum_{i=1}^{m}\sum_{j=1}^{l}\alpha_i\beta_jK(x_i,z_j)
f⋅g=i=1∑mj=1∑lαiβjK(xi,zj)
3)在集合S上定义范数,升级希尔伯特空间
定义: ∣ ∣ f ∣ ∣ = f ⋅ f ||f||=\sqrt{f\cdot f} ∣∣f∣∣=f⋅f
此时空间转换为赋范线性空间。
新空间中K的特点:再生性!如: f ( ⋅ ) = ∑ i = 1 m α i K ( ⋅ , x i ) K ( ⋅ , x ) ⋅ f = ∑ i = 1 m α i K ( x , x i ) = f ( x ) \begin{split} &f(\cdot)=\sum_{i=1}^{m}\alpha_iK(\cdot,x_i)\\ &K(\cdot,x)\cdot f=\sum_{i=1}^{m}\alpha_iK(x,x_i)=f(x) \end{split} f(⋅)=i=1∑mαiK(⋅,xi)K(⋅,x)⋅f=i=1∑mαiK(x,xi)=f(x)
再比如: K ( ⋅ , x ) ⋅ K ( ⋅ , z ) = K ( x , z ) K(\cdot,x)\cdot K(\cdot,z)=K(x,z) K(⋅,x)⋅K(⋅,z)=K(x,z)
总结:我们此处做的是如何从原始空间中找到一个希尔伯特空间!
16.正定核函数的充要条件
设 K : χ × χ → R K:\chi\times \chi\rightarrow R K:χ×χ→R是对称函数,则 K ( x , z ) K(x,z) K(x,z)为正定核的充要条件是 ∀ x i ∈ χ , i = 1 , 2 , ⋯ , m \forall x_i\in\chi\;,\;i=1,2,\cdots,m ∀xi∈χ,i=1,2,⋯,m, K ( x , z ) K(x,z) K(x,z)对应的 G r a m Gram Gram矩阵 K = [ K ( x i , x j ) ] m × m K=[K(x_i,x_j)]_{m\times m} K=[K(xi,xj)]m×m是半正定矩阵。
接下来我们证明一下这个结论:
首先看一下充分性:
K K K是半正定矩阵,我们的映射为: ϕ : x → K ( ⋅ , x ) χ → H \begin{split} \phi\;:\;&x\rightarrow K(\cdot,x)\\ &\chi\rightarrow H \end{split} ϕ:x→K(⋅,x)χ→H
K ( ⋅ , x ) ⋅ K ( ⋅ , z ) = K ( x , z ) K(\cdot,x)\cdot K(\cdot,z)=K(x,z) K(⋅,x)⋅K(⋅,z)=K(x,z)说明具有再生性,所以此时 K ( x , z ) K(x,z) K(x,z)为正定核。
必要性:
K ( x , z ) K(x,z) K(x,z)为正定核,所以存在下面的映射: χ → H x → ϕ ( x ) , z → ϕ ( z ) \begin{split} &\chi\rightarrow H\\ &x\rightarrow \phi(x)\;,\;z\rightarrow \phi(z) \end{split} χ→Hx→ϕ(x),z→ϕ(z)
我们有: K ( ⋅ , x ) ⋅ K ( ⋅ , z ) = K ( x , z ) K(\cdot,x)\cdot K(\cdot,z)=K(x,z) K(⋅,x)⋅K(⋅,z)=K(x,z)
怎么判断矩阵为半正定矩阵呢? ∀ x 1 , x 2 , ⋯ , x m ∈ χ ∀ c 1 , c 2 , ⋯ , c m ∈ R c = ( c 1 , c 2 , ⋯ , c m ) T \begin{split} &\forall x_1,x_2,\cdots,x_m\in \chi\\ &\forall c_1,c_2,\cdots,c_m\in R\\ &c=(c_1,c_2,\cdots,c_m)^T \end{split} ∀x1,x2,⋯,xm∈χ∀c1,c2,⋯,cm∈Rc=(c1,c2,⋯,cm)T
K = [ K ( x 1 , x 1 ) K ( x 1 , x 2 ) ⋯ K ( x 1 , x m ) K ( x 2 , x 1 ) K ( x 2 , x 2 ) ⋯ K ( x 2 , x m ) ⋯ ⋯ ⋯ ⋯ K ( x m , x 1 ) K ( x m , x 2 ) ⋯ K ( x m , x m ) ] K=\begin{bmatrix} K(x_1,x_1) & K(x_1,x_2) & \cdots & K(x_1,x_m) \\ K(x_2,x_1) & K(x_2,x_2) & \cdots & K(x_2,x_m) \\ \cdots &\cdots & \cdots &\cdots\\ K(x_m,x_1) & K(x_m,x_2) & \cdots & K(x_m,x_m) \end{bmatrix} K=⎣ ⎡K(x1,x1)K(x2,x1)⋯K(xm,x1)K(x1,x2)K(x2,x2)⋯K(xm,x2)⋯⋯⋯⋯K(x1,xm)K(x2,xm)⋯K(xm,xm)⎦ ⎤
如果有:
c
T
K
c
≥
0
c^TKc\geq0
cTKc≥0 则表示
K
K
K是半正定的矩阵。此时有:
c
T
K
c
=
(
c
1
,
c
2
,
⋯
,
c
m
)
[
K
(
x
1
,
x
1
)
K
(
x
1
,
x
2
)
⋯
K
(
x
1
,
x
m
)
K
(
x
2
,
x
1
)
K
(
x
2
,
x
2
)
⋯
K
(
x
2
,
x
m
)
⋯
⋯
⋯
⋯
K
(
x
m
,
x
1
)
K
(
x
m
,
x
2
)
⋯
K
(
x
m
,
x
m
)
]
[
c
1
c
2
⋯
c
m
]
c^TKc=(c_1,c_2,\cdots,c_m) \begin{bmatrix} K(x_1,x_1) & K(x_1,x_2) & \cdots & K(x_1,x_m) \\ K(x_2,x_1) & K(x_2,x_2) & \cdots & K(x_2,x_m) \\ \cdots &\cdots & \cdots &\cdots\\ K(x_m,x_1) & K(x_m,x_2) & \cdots & K(x_m,x_m) \end{bmatrix} \begin{bmatrix} c_1\\ c_2\\ \cdots\\ c_m \end{bmatrix}
cTKc=(c1,c2,⋯,cm)⎣
⎡K(x1,x1)K(x2,x1)⋯K(xm,x1)K(x1,x2)K(x2,x2)⋯K(xm,x2)⋯⋯⋯⋯K(x1,xm)K(x2,xm)⋯K(xm,xm)⎦
⎤⎣
⎡c1c2⋯cm⎦
⎤
方法一:我们通过内积运算 ( c 1 , c 2 , ⋯ , c m ) [ ϕ ( x 1 ) ⋅ ϕ ( x 1 ) ϕ ( x 1 ) ⋅ ϕ ( x 2 ) ⋯ ϕ ( x 1 ) ⋅ ϕ ( x m ) ϕ ( x 2 ) ⋅ ϕ ( x 1 ) ϕ ( x 2 ) ⋅ ϕ ( x 2 ) ⋯ ϕ ( x 2 ) ⋅ ϕ ( x m ) ⋯ ⋯ ⋯ ⋯ ϕ ( x m ) ⋅ ϕ ( x 1 ) ϕ ( x m ) ⋅ ϕ ( x 2 ) ⋯ ϕ ( x m ) ⋅ ϕ ( x m ) ] [ c 1 c 2 ⋯ c m ] \ (c_1,c_2,\cdots,c_m) \begin{bmatrix} \phi(x_1)\cdot \phi(x_1) & \phi(x_1)\cdot \phi(x_2) & \cdots & \phi(x_1)\cdot \phi(x_m) \\ \phi(x_2)\cdot \phi(x_1) & \phi(x_2)\cdot \phi(x_2) & \cdots & \phi(x_2)\cdot \phi(x_m) \\ \cdots &\cdots & \cdots &\cdots\\ \phi(x_m)\cdot \phi(x_1) & \phi(x_m)\cdot \phi(x_2) & \cdots & \phi(x_m)\cdot \phi(x_m) \end{bmatrix} \begin{bmatrix} c_1\\ c_2\\ \cdots\\ c_m \end{bmatrix} (c1,c2,⋯,cm)⎣ ⎡ϕ(x1)⋅ϕ(x1)ϕ(x2)⋅ϕ(x1)⋯ϕ(xm)⋅ϕ(x1)ϕ(x1)⋅ϕ(x2)ϕ(x2)⋅ϕ(x2)⋯ϕ(xm)⋅ϕ(x2)⋯⋯⋯⋯ϕ(x1)⋅ϕ(xm)ϕ(x2)⋅ϕ(xm)⋯ϕ(xm)⋅ϕ(xm)⎦ ⎤⎣ ⎡c1c2⋯cm⎦ ⎤ = ( c 1 , c 2 , ⋯ , c m ) [ ϕ ( x 1 ) ϕ ( x 2 ) ⋯ ϕ ( x m ) ] [ ϕ ( x 1 ) , ϕ ( x 2 ) , ⋯ , ϕ ( x m ) ] [ c 1 c 2 ⋯ c m ] = ∣ ∣ ∑ i = 1 m c i ϕ ( x i ) ∣ ∣ 2 ≥ 0 =(c_1,c_2,\cdots,c_m) \begin{bmatrix} \phi(x_1)\\ \phi(x_2)\\ \cdots\\ \phi(x_m) \end{bmatrix} [\phi(x_1),\phi(x_2),\cdots,\phi(x_m)] \begin{bmatrix} c_1\\ c_2\\ \cdots\\ c_m \end{bmatrix} =||\sum_{i=1}^{m}c_i\phi(x_i)||^2\geq0 =(c1,c2,⋯,cm)⎣ ⎡ϕ(x1)ϕ(x2)⋯ϕ(xm)⎦ ⎤[ϕ(x1),ϕ(x2),⋯,ϕ(xm)]⎣ ⎡c1c2⋯cm⎦ ⎤=∣∣i=1∑mciϕ(xi)∣∣2≥0
方法二:直接表示二次型 ∑ i , j = 1 m c i c j K ( x i , x j ) = ∑ i , j = 1 m c i c j ϕ ( x i ) ⋅ ϕ ( x j ) = ∑ i = 1 m ∑ j = 1 m [ c i ϕ ( x i ) ] ⋅ [ c j ϕ ( x j ) ] = [ c 1 ϕ ( x 1 ) + c 2 ϕ ( x 2 ) + ⋯ + c m ϕ ( x m ) ] ⋅ [ c 1 ϕ ( x 1 ) + c 2 ϕ ( x 2 ) + ⋯ + c m ϕ ( x m ) ] = ∣ ∣ ∑ i = 1 m c i ϕ ( x i ) ∣ ∣ 2 2 \begin{split} \sum_{i,j=1}^{m}c_ic_jK(x_i,x_j)&=\sum_{i,j=1}^{m}c_ic_j\phi(x_i)\cdot \phi(x_j)\\ &=\sum_{i=1}^{m}\sum_{j=1}^{m}[c_i\phi(x_i)]\cdot [c_j\phi(x_j)]\\ &=[c_1\phi(x_1)+c_2\phi(x_2)+\cdots+c_m\phi(x_m)]\cdot [c_1\phi(x_1)+c_2\phi(x_2)+\cdots+c_m\phi(x_m)]\\ &=||\sum_{i=1}^{m}c_i\phi(x_i)||_2^2 \end{split} i,j=1∑mcicjK(xi,xj)=i,j=1∑mcicjϕ(xi)⋅ϕ(xj)=i=1∑mj=1∑m[ciϕ(xi)]⋅[cjϕ(xj)]=[c1ϕ(x1)+c2ϕ(x2)+⋯+cmϕ(xm)]⋅[c1ϕ(x1)+c2ϕ(x2)+⋯+cmϕ(xm)]=∣∣i=1∑mciϕ(xi)∣∣22
正定核的等价定义:
设 χ ∈ R n , K ( x , z ) \chi\in R^n\;,\;K(x,z) χ∈Rn,K(x,z)是定义在 χ × χ \chi\times\chi χ×χ上的对称函数,如果对 ∀ x i ∈ χ , i = 1 , 2 , ⋯ , m \forall x_i\in\chi\;,\;i=1,2,\cdots,m ∀xi∈χ,i=1,2,⋯,m, K ( x , z ) K(x,z) K(x,z)对应的 G r a m Gram Gram矩阵 K = [ K ( x i , x j ) ] m × m K=[K(x_i,x_j)]_{m\times m} K=[K(xi,xj)]m×m是半正定矩阵,则称 K ( x , z ) K(x,z) K(x,z)是正定核。
17.常用核函数
:定义在欧式空间上
1)多项式核函数 K ( x , z ) = ( x ⋅ z + 1 ) p K(x,z)=(x\cdot z+1)^{p} K(x,z)=(x⋅z+1)p
它的一般形式为: ( x ⋅ z + c ) p (x\cdot z+c)^{p} (x⋅z+c)p 其中 c c c是常量。
决策函数:
f
(
x
)
=
s
i
g
n
(
∑
i
=
1
N
a
i
∗
y
i
⋅
(
x
i
⋅
x
+
1
)
p
+
b
∗
)
f(x)=sign(\sum_{i=1}^{N}a_i^{*}y_i\cdot(x_i\cdot x+1)^{p}+b^{*})
f(x)=sign(i=1∑Nai∗yi⋅(xi⋅x+1)p+b∗)
2)高斯核函数 K ( x , z ) = e x p ( − ∣ ∣ x − z ∣ ∣ 2 2 σ 2 ) K(x,z)=exp(-\frac{||x-z||^2}{2\sigma^2}) K(x,z)=exp(−2σ2∣∣x−z∣∣2)
决策函数:
f
(
x
)
=
s
i
g
n
(
∑
i
=
1
N
a
i
∗
y
i
e
x
p
(
−
∣
∣
x
−
x
i
∣
∣
2
2
σ
2
)
+
b
∗
)
f(x)=sign(\sum_{i=1}^{N}a_i^{*}y_i{exp}(-\frac{||x-x_i||^2}{2\sigma^2})+b^{*})
f(x)=sign(i=1∑Nai∗yiexp(−2σ2∣∣x−xi∣∣2)+b∗)
:定义在离散数据集合上
字符串对应的空间映射到高维空间:
[
ϕ
n
(
s
)
]
μ
=
∑
i
,
s
(
i
)
=
μ
λ
(
i
)
[\phi_n(s)]_{\mu}=\sum_{i,s(i)=\mu}\lambda^{(i)}
[ϕn(s)]μ=i,s(i)=μ∑λ(i)
n n n表示字符串长度, s s s是字符串, l ( i ) l(i) l(i)表示小的字符串对应的长度。
例子:一个文本[’big’,’pig’,’bag’]
长度为2的子字符串为[’bi’,’bg’,’ig’,’pi’,’pg’,’ba’,’ag’]
投影的特征空间取 R 7 R^7 R7,计算长度:(最后一个元素位置)-(最前一个位置)+1
bi bg ig pi pg ba ag
big
λ
2
\lambda^2
λ2
λ
3
\lambda^3
λ3
λ
2
\lambda^2
λ2 0 0 0 0
pig 0 0
λ
2
\lambda^2
λ2
λ
2
\lambda^2
λ2
λ
3
\lambda^3
λ3 0 0
bag 0
λ
3
\lambda^3
λ3 0 0 0
λ
2
\lambda^2
λ2
λ
2
\lambda^2
λ2
我们得出结果: K ( b i g , p i g ) = λ 4 , K ( b i g , b a g ) = λ 6 K(big\;,\;pig)=\lambda^4\;,\;K(big\;,\;bag)=\lambda^6 K(big,pig)=λ4,K(big,bag)=λ6
度量两个字符串之间的相似度的方法可以使用—余弦相似度:
cos
θ
=
x
⋅
y
∣
∣
x
∣
∣
∣
∣
y
∣
∣
\cos\theta=\frac{x\cdot y}{||x||||y||}
cosθ=∣∣x∣∣∣∣y∣∣x⋅y
比较两个文本之间的相似度,如: K ( b i g , p i g ) ∣ ∣ K ( b i g , b i g ) ∣ ∣ ∣ ∣ K ( p i g , p i g ) ∣ ∣ = λ 4 λ 6 + 2 λ 4 λ 6 + 2 λ 4 = λ 4 λ 6 + 2 λ 4 = 1 2 + λ 2 \begin{split} &\frac{K(big,pig)}{||K(big,big)||||K(pig,pig)||}\\ =&\frac{\lambda^4}{\sqrt{\lambda^6+2\lambda^4}\sqrt{\lambda^6+2\lambda^4}}\\ =&\frac{\lambda^4}{\lambda^6+2\lambda^4}=\frac{1}{2+\lambda^2} \end{split} ==∣∣K(big,big)∣∣∣∣K(pig,pig)∣∣K(big,pig)λ6+2λ4λ6+2λ4λ4λ6+2λ4λ4=2+λ21
2)字符串核函数 [ ϕ n ( s ) ] μ = ∑ i , s ( i ) = μ λ ( i ) [\phi_n(s)]_{\mu}=\sum_{i,s(i)=\mu}\lambda^{(i)} [ϕn(s)]μ=i,s(i)=μ∑λ(i)
18.总结
线性支持向量机
[线性支持向量机]{}
输入:训练集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯ , ( x N , y N ) } T=\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\} T={(x1,y1),(x2,y2),⋯,(xN,yN)},其中, x i ∈ χ ∈ R n , y i ∈ { − 1 , + 1 } x_i\in\chi\in R^n\;,\;y_i\in\{-1,+1\} xi∈χ∈Rn,yi∈{−1,+1}。
输出:分离超平面与分类决策函数
算法:
给定惩罚系数 c ≥ 0 c\geq0 c≥0,构造优化问题 min α 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i ⋅ x j ) − ∑ i = 1 N α i s . t . ∑ i = 1 N α i y i = 0 , 0 ≤ α i ≤ c , i = 1 , 2 , ⋯ , N \begin{split} &\min_{\alpha}\;\frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{N}\alpha_i\alpha_jy_iy_j(x_i\cdot x_j)-\sum_{i=1}^{N}\alpha_i\\ &s.t.\;\sum_{i=1}^{N}\alpha_iy_i=0\;,\;0\leq\alpha_i\leq c\;,\;i=1,2,\cdots,N \end{split} αmin21i=1∑Nj=1∑Nαiαjyiyj(xi⋅xj)−i=1∑Nαis.t.i=1∑Nαiyi=0,0≤αi≤c,i=1,2,⋯,N
求解最优化问题,得到最优解
α
∗
=
(
α
1
∗
,
α
2
∗
,
⋯
,
α
N
∗
)
T
\alpha^{*}=(\alpha_1^{*},\alpha_2^{*},\cdots,\alpha_N^{*})^T
α∗=(α1∗,α2∗,⋯,αN∗)T
根据 α ∗ \alpha^{*} α∗求解 ω ∗ = ∑ i = 1 N α i ∗ y i x i \omega^{*}=\sum_{i=1}^{N}\alpha_i^{*}y_ix_i ω∗=i=1∑Nαi∗yixi
挑出符合
0
<
α
i
∗
<
c
0<\alpha_i^{*}<c
0<αi∗<c的点
(
x
j
,
y
j
)
(x_j,y_j)
(xj,yj)计算:
b
∗
=
y
j
−
∑
i
=
1
N
α
i
∗
y
i
(
x
i
⋅
x
j
)
b^{*}=y_j-\sum_{i=1}^{N}\alpha_i^{*}y_i(x_i\cdot x_j)
b∗=yj−i=1∑Nαi∗yi(xi⋅xj)
分离超平面为: ω ∗ ⋅ x + b ∗ = 0 \omega^{*}\cdot x+b^{*}=0 ω∗⋅x+b∗=0
决策函数为: f ( x ) = s i g n ( ω ∗ ⋅ x + b ∗ ) f(x)=sign(\omega^{*}\cdot x+b^{*}) f(x)=sign(ω∗⋅x+b∗)
非线性支持向量机
[非线性支持向量机]
算法:
给定惩罚系数 c ≥ 0 c\geq0 c≥0,构造优化问题 min α 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j K ( x i , x j ) − ∑ i = 1 N α i s . t . ∑ i = 1 N α i y i = 0 , 0 ≤ α i ≤ c , i = 1 , 2 , ⋯ , N \begin{split} &\min_{\alpha}\;\frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{N}\alpha_i\alpha_jy_iy_jK(x_i,x_j)-\sum_{i=1}^{N}\alpha_i\\ &s.t.\;\sum_{i=1}^{N}\alpha_iy_i=0\;,\;0\leq\alpha_i\leq c\;,\;i=1,2,\cdots,N \end{split} αmin21i=1∑Nj=1∑NαiαjyiyjK(xi,xj)−i=1∑Nαis.t.i=1∑Nαiyi=0,0≤αi≤c,i=1,2,⋯,N
求解最优化问题,得到最优解
α
∗
=
(
α
1
∗
,
α
2
∗
,
⋯
,
α
N
∗
)
T
\alpha^{*}=(\alpha_1^{*},\alpha_2^{*},\cdots,\alpha_N^{*})^T
α∗=(α1∗,α2∗,⋯,αN∗)T
根据
α
∗
\alpha^{*}
α∗求解
ω
∗
=
∑
i
=
1
N
α
i
∗
y
i
K
(
⋅
,
x
i
)
\omega^{*}=\sum_{i=1}^{N}\alpha_i^{*}y_iK(\cdot,x_i)
ω∗=i=1∑Nαi∗yiK(⋅,xi)
挑出符合
0
<
α
i
∗
<
c
0<\alpha_i^{*}<c
0<αi∗<c的点
(
x
j
,
y
j
)
(x_j,y_j)
(xj,yj)计算:
b
∗
=
y
j
−
∑
i
=
1
N
α
i
∗
y
i
K
(
x
i
,
x
j
)
b^{*}=y_j-\sum_{i=1}^{N}\alpha_i^{*}y_iK(x_i,x_j)
b∗=yj−i=1∑Nαi∗yiK(xi,xj)
决策函数: f ( x ) = s i g n ( ∑ i = 1 N α i ∗ y i K ( x , x i ) + b ∗ ) f(x)=sign(\sum_{i=1}^{N}\alpha_i^{*}y_iK(x,x_i)+b^{*}) f(x)=sign(i=1∑Nαi∗yiK(x,xi)+b∗)
其中 x x x为新的实例。